同事一句sql成功将线上服务搞瘫

欢迎来到我的博客,代码的世界里,每一行都是一个故事


在这里插入图片描述

🎏:你只管努力,剩下的交给时间

🏠 :小破站

搞笑起因

事情的起因是这样的
张三:怎么线上服务这么慢
李四:你的网络有问题,换个网试试
张三:偷偷打开网页,一样的龟速

王五:不对呀,别的都很快,为什么单单我们的系统慢啊,服务器不行了?

赵六:获取过一会就好了,等下吧

。。。。。。一等不要紧,系统越来越慢,甚至有人进不去,有人直接超时

ce79a0be0e6e3f15c2a8ebcb4cb742d0

王麻子:我本地不会哦,而且是飞一般的感觉
刘能子:我本地也会,巨卡(前端大佬,连接的是线上后端)

我:冷静一下,首先我们服务器配置很高,不会存在被打满的情况,而且线上的后端,与线下的后端差的就是一个正式库,一个测试库,还没等我想完(近处一个声音飘过~~~~~~,测试库很快,正式库很慢)。

找原因

根据上面的问题,我们不难发现是数据库出现了问题

第一步

执行SHOW PROCESSLIST;,它是 MySQL 中的一个命令,用于显示当前正在运行的线程信息。它可以帮助你了解哪些查询正在执行,以及查询的状态。

每列的含义如下:

  • Id:线程的唯一标识符。
  • User:执行该线程的 MySQL 用户。
  • Host:执行该线程的客户端主机。
  • db:当前连接的数据库名。
  • Command:正在执行的命令类型(如 SleepQuery 等)。
  • Time:命令已执行的时间(以秒为单位)。
  • State:线程的状态(如 Sending dataSorting result 等)。
  • Info:正在执行的 SQL 语句。

从执行结果看,没有发生死锁的,当然如果发生了死锁,情况应该比这个还惨吧,但是显而易见的是有一条的执行时间很长,命令大致就是update 语句

第二步

随后问了一下是否有人执行了这个语句,果然,同事说她执行了这个语句,而且update的数量是几百w,什么概念。,随即另一个同事说这个可以kill掉吗,就直接kill了。但是它的状态显示为killed,然而它还存在。很显然这个事务发生了回滚。

第三步

知道关于事务,于是我又执行了另一个语句SELECT * FROM information_schema.innodb_trx;

该查询将返回如下列:

  • trx_id:事务的唯一标识符。
  • trx_state:事务的状态,如 RUNNINGLOCK WAIT 等。
  • trx_started:事务开始的时间。
  • trx_requested_lock_id:事务请求的锁的标识符。
  • trx_wait_started:事务开始等待的时间。
  • trx_weight:事务的权重,即事务修改的行数和锁的数量。
  • trx_mysql_thread_id:与该事务关联的 MySQL 线程的标识符。
  • trx_query:事务正在执行的 SQL 查询。
  • trx_operation_state:事务的操作状态。
  • trx_tables_in_use:事务正在使用的表数量。
  • trx_tables_locked:事务锁定的表数量。
  • trx_lock_structs:事务的锁结构数量。
  • trx_lock_memory_bytes:事务的锁占用的内存量。
  • trx_rows_locked:事务锁定的行数。
  • trx_rows_modified:事务修改的行数。
  • trx_concurrency_tickets:事务的并发票据。
  • trx_isolation_level:事务的隔离级别。
  • trx_unique_checks:事务的唯一性检查状态。
  • trx_foreign_key_checks:事务的外键检查状态。
  • trx_last_foreign_key_error:事务的最后一个外键错误。
  • trx_adaptive_hash_latched:事务的自适应哈希表的锁定状态。
  • trx_adaptive_hash_timeout:事务的自适应哈希表的超时时间。
  • trx_is_read_only:事务是否为只读事务。
  • trx_autocommit_non_locking:事务的自动提交非锁定状态。

WechatIMG14992

上图可以看到事务的状态为回滚,事务的权重为100多万,80w,还有一个386w的

解决方法

第一种

ebfe2ce7f2cfa9b68be361b48a7a74d7

最简单最暴力的方法就是上面的,但是会存在很大的问题

第二种

f5543c858f7edc2e0238a61283591fc6

第二种方法就是躺平,等回滚完成。后续杜绝这种

为什么update会导致数据库慢

首先我们要知道,该表中数据大约有500w,而sql更新的是100w条,就会出现以下问题。

锁争用

  • 更新操作会导致数据库表上的行锁或表锁,特别是在并发访问较高的情况下,会导致锁争用问题,使得其他操作(如查询、插入、删除)无法及时执行。

索引更新

  • 如果表上有多个索引,更新操作会导致索引的更新和重建,这会消耗大量的CPU和IO资源,导致性能下降。

事务开销

  • 如果更新操作是在一个事务中执行的,事务的开销(如日志记录、回滚段的使用等)也会影响数据库的性能。

IO瓶颈

  • 大量的更新操作会导致大量的磁盘IO操作,如果磁盘性能不够,可能会成为瓶颈。

表和索引的碎片化

  • 大量的更新操作可能会导致表和索引的碎片化,影响查询和更新的效率。

内存和缓存压力

  • 更新大量数据会消耗大量的内存和缓存资源,如果内存和缓存不足,可能会导致性能下降。

锁升级

  • 数据库可能会从行锁升级为页锁或表锁,从而影响其他事务的执行

确实需要这样操作呢?

如果你确实需要对300万条数据进行更新,可以采取以下方法来确保操作的高效性和安全性:

1. 分批更新

将大规模更新操作分成多个小批次来执行,每次只更新一部分数据。这样可以减少锁定时间,降低对系统的负载。

-- 伪代码示例,假设每次更新1万条记录
SET @batch_size = 10000;
SET @start = 0;

WHILE @start < 3000000 DO
  UPDATE your_table
  SET column1 = new_value
  WHERE condition
  LIMIT @start, @batch_size;

  SET @start = @start + @batch_size;
END WHILE;

2. 使用事务控制

将每个批次的更新操作放在一个事务中,确保数据的一致性和完整性。如果出现错误,可以回滚事务,避免部分更新导致数据不一致。

START TRANSACTION;

-- 更新操作
UPDATE your_table
SET column1 = new_value
WHERE condition
LIMIT @batch_size;

COMMIT;

3. 维护索引

在更新操作前,检查并确保相关索引的存在,以加快查询和更新速度。如果更新涉及索引列,可能需要在更新后重建索引。

-- 检查并重建索引
ALTER TABLE your_table DROP INDEX index_name;
ALTER TABLE your_table ADD INDEX index_name (column1);

4. 避免高峰期操作

选择系统负载较低的时间段进行大规模更新,减少对其他用户和操作的影响。

5. 监控和调优

实时监控数据库的性能和资源使用情况,及时调整参数和资源分配。例如,调整Innodb_buffer_pool_size、Innodb_log_file_size等参数,以适应大规模更新操作。

6. 利用临时表

如果需要对大量数据进行复杂计算或转换,可以考虑使用临时表来存储中间结果,减少对原表的直接操作。

-- 创建临时表
CREATE TEMPORARY TABLE temp_table AS
SELECT * FROM your_table WHERE condition;

-- 在临时表中进行更新
UPDATE temp_table
SET column1 = new_value
WHERE condition;

-- 将更新后的数据回写到原表
UPDATE your_table t
JOIN temp_table tt ON t.id = tt.id
SET t.column1 = tt.column1;

7. 日志和备份

在进行大规模更新前,确保有最新的数据库备份,以防止意外数据丢失。同时,可以开启详细日志记录,便于后续问题排查。

示例操作步骤

以下是一个具体的示例,演示如何分批次更新300万条记录:

-- 设置批次大小
SET @batch_size = 10000;
SET @start = 0;
SET @end = 3000000;

-- 开始更新操作
WHILE @start < @end DO
  START TRANSACTION;

  -- 批次更新
  UPDATE your_table
  SET column1 = new_value
  WHERE condition
  LIMIT @batch_size;

  COMMIT;

  -- 更新起始点
  SET @start = @start + @batch_size;

  -- 可以加入短暂的延迟,避免系统负载过高
  DO SLEEP(1);
END WHILE;

通过以上方法,可以有效地降低大规模数据更新对系统性能的影响,确保操作的安全性和高效性。

加餐

默认情况下一般不会调整下面我说的这两个参数,但是我认为他们确实很重要

调大 innodb_buffer_pool_sizeinnodb_io_capacity 是优化 MySQL InnoDB 存储引擎性能的重要步骤,尤其是在进行大规模数据更新时。下面是这两个参数的作用和调整建议:

1. innodb_buffer_pool_size

作用

innodb_buffer_pool_size 参数指定了 InnoDB 缓冲池的大小。缓冲池用于缓存数据和索引页,这样可以减少对磁盘的访问,提高读取性能。

  • 增加缓冲池大小:能够容纳更多的表数据和索引在内存中,减少磁盘IO,从而提高查询和更新的速度。
  • 影响:提高缓冲池大小可以减少数据库访问磁盘的次数,但过大可能会导致系统内存不足,影响其他进程的运行。
调整建议
  • 根据系统内存:一般情况下,可以将 innodb_buffer_pool_size 设置为系统总内存的60%-80%,具体取决于其他应用程序对内存的需求。
  • 逐步增加:逐步增加参数值,监控数据库性能和系统资源,找到最佳配置。
  • 监控:使用 SHOW ENGINE INNODB STATUS; 命令监控缓冲池的使用情况。检查 Buffer pool hit rateBuffer pool reads 等指标,以确保缓冲池配置合理。
-- 设置缓冲池大小
SET GLOBAL innodb_buffer_pool_size = 8G;  -- 设置为8GB

2. innodb_io_capacity

作用

innodb_io_capacity 参数控制了InnoDB每秒允许的IO操作的数量,主要影响InnoDB的异步IO性能,决定了InnoDB在后台如何处理写操作和检查点操作。

  • 增加IO容量:可以提高InnoDB的IO吞吐量,减少I/O瓶颈,尤其是在进行大量写操作时。
  • 影响:提高 innodb_io_capacity 可以加快数据的写入速度和检查点的处理,但设置过高可能会导致磁盘IO过载,影响系统稳定性。
调整建议
  • 根据磁盘性能:设置 innodb_io_capacity 时需要考虑磁盘的实际性能。一般情况下,可以设置为磁盘每秒IOPS的20%-50%。
  • 监控:使用 SHOW ENGINE INNODB STATUS;SHOW VARIABLES LIKE 'innodb_io_capacity'; 监控IO操作情况,确保系统能够承受设置的IO负载。
-- 设置IO容量
SET GLOBAL innodb_io_capacity = 2000;  -- 设置为2000

总结

  1. 设置 innodb_buffer_pool_size:确保足够的内存用于缓存数据和索引,减少磁盘访问。
  2. 设置 innodb_io_capacity:提高IO吞吐量,适应大规模写操作和检查点处理。
  3. 监控和调整:在调整这两个参数后,监控数据库性能和系统资源使用情况,逐步调整,以达到最佳性能。

确保在修改这些参数之前,备份好数据库和配置文件,避免因配置不当导致系统不稳定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只牛博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值