算法
文章平均质量分 80
MVincent
这个作者很懒,什么都没留下…
展开
-
RF、GBDT、GBDT,XgBoost的区别
简单的说:首先,GBDT和RF都是集成方法中的经典模型,我们需要弄清楚下面几个问题: 1、GBDT是采用boosing方法,RF采用的是baggging方法 2、bias和variance是解释模型泛化性能的,其实还有噪声然后,理解GBDT和RF执行原理,其中GBDT中的核心是通过用分类器(如CART、RF)拟合损失函数梯度,而损失函数的定义就决定了在子区域内各个步...转载 2018-06-04 16:52:46 · 1555 阅读 · 0 评论 -
机器学习常见的激活函数
Sigmoid. Sigmoid 非线性激活函数的形式是,其图形如上图左所示。之前我们说过,sigmoid函数输入一个实值的数,然后将其压缩到0~1的范围内。特别地,大的负数被映射成0,大的正数被映射成1。sigmoid function在历史上流行过一段时间因为它能够很好的表达“激活”的意思,未激活就是0,完全饱和的激活则是1。而现在sigmoid已经不怎么常用了,主要是因为它有两个缺点:Si...转载 2018-06-04 22:00:13 · 2215 阅读 · 0 评论 -
集成学习(3)——梯度提升树(GBDT)
本文就对Boosting家族中一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 以下简称GBDT)做一个总结。GBDT有很多简称,有GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ), GBRT(Gradient Boosting Regression Tree), MART(Multipl...转载 2018-06-05 21:42:42 · 632 阅读 · 0 评论 -
集成学习(1)
集成学习(ensemble learning)可以说是现在非常火爆的机器学习方法了。它本身不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务。也就是我们常说的“博采众长”。集成学习可以用于分类问题集成,回归问题集成,特征选取集成,异常点检测集成等等,可以说所有的机器学习领域都可以看到集成学习的身影。本文就对集成学习的原理做一个总结。1. 集成学习概述 从下图,我们可以...转载 2018-06-05 21:47:44 · 336 阅读 · 0 评论 -
集成学习(2)——Adaboost算法
在集成原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系。前者的代表算法就是是boosting系列算法。在boosting系列算法中, Adaboost是最著名的算法之一。Adaboost既可以用作分类,也可以用作回归。本文就对Adaboost算法做一个总结。1. 回顾boosting算法的基本...转载 2018-06-05 21:51:22 · 793 阅读 · 0 评论