PyTorch学习(一)——PyTorch概念、安装及代码样例

本文介绍了PyTorch的基本概念,包括其作为Python库的灵活性和动态计算图的优势。详细讲述了如何创建和激活PyTorch虚拟环境,以及安装PyTorch的步骤。最后,概述了使用PyTorch进行深度学习的通用流程,以MNIST手写数字识别为例。
摘要由CSDN通过智能技术生成

1. PyTorch的概念

参考资料
PyTorch是一个机遇Python的库,用来提供一个具有灵活性的深度学习开发平台,其工作流程非常接近Python的科学计算库——numpy。

选择PyTorch的原因有以下几点:
① 易于使用的API:就像Python一样简单。
② Python的支持:PyTorch可以顺利地与Python数据科学栈集成,它非常类似于numpy,甚至注意不到它们的差别。
③ 动态计算图:取代了具有特定功能的预定义图形,PyTorch为我们提供了一个框架,以便可以在运行时构建计算图,甚至在运行时更改它们。在不知道创建神经网络需要多少内存的情况下这非常有价值。
④其余优点:多gpu支持,自定义数据加载器和简化的预处理器。

2. PyTorch的安装

参考资料

2.1 创建PyTorch虚拟环境

① 先安装Anaconda软件,windows安装十分简单。
安装 Anaconda 完毕后,我们在安装 PyTorch 之前最好先创建一个 pytorch 的虚拟环境。之所以创建虚拟环境是因为 Python 为不同的项目需求创建不同的虚拟环境非常常见。
② 打开Anaconda自带的Anaconda Prompt(在开始菜单里)。
③ 输入“conda create --name pytorch python=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值