1.蚁群算法简介
蚁群算法(Ant Clony Optimization, ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性。蚁群算法是一种用来寻找优化路径的概率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
蚁群算法是一种仿生学算法,是由自然界中蚂蚁觅食的行为而启发的。在自然界中,蚂蚁觅食过程中,蚁群总能够按照寻找到一条从蚁巢和食物源的最优路径。图(1)显示了这样一个觅食的过程。
在图1(a)中,有一群蚂蚁,假如A是蚁巢,E是食物源(反之亦然)。这群蚂蚁将沿着蚁巢和食物源之间的直线路径行驶。假如在A和E之间突然出现了一个障碍物(图1(b)),那么,在B点(或D点)的蚂蚁将要做出决策,到底是向左行驶还是向右行驶?由于一开始路上没有前面蚂蚁留下的信息素(pheromone),蚂蚁朝着两个方向行进的概率是相等的。但是当有蚂蚁走过时,它将会在它行进的路上释放出信息素,并且这种信息素会以一定的速率散发掉。信息素是蚂蚁之间交流的工具之一。它后面的蚂蚁通过路上信息素的浓度,做出决策,往左还是往右。很明显,沿着短边的的路径上信息素将会越来越浓(图1(c)),从而吸引了越来越多的蚂蚁沿着这条路径行驶。
2.TSP问题描述
蚁群算法最早用来求解TSP问题,并且表现出了很大的优越性,因为它分布式特性,鲁棒性强并且容易与其它算法结合,但是同时也存在这收敛速度慢,容易陷入局部最优(local optimal)等缺点。
TSP问题(Travel Salesperson Problem,即旅行商问题或者称为中国邮递员问题),是一种NP-hard问题,此类问题用一般的算法是很大得到最优解的,所以一般需要借助一些启发式算法求解,例如遗传算法(GA),蚁群算法(ACO),微粒群算法(PSO)等等。
TSP问题可以分为两类,一类是对称TSP问题(Symmetric TSP),另一类是非对称问题(Asymmetric TSP)。所有的TSP问题都可以用一个图(Graph)来描述:
令V={C1,C2,…,Ci,…,Cn},i=1,2,…,n是所有城市的集合,Ci表示第i个城市,n为城市的数目;
E={(r,s):r,s∈V}是所有城市之间连接的集合;
C={Crs:r,s∈V}是所有城市之间连接的成本度量(一般为城市之间的距离);
如果Crs=Csr,那么该TSP问题为对称的,否则为非对称的。
一个TSP问题可以表达为:
求解遍历图G=(V,E,C),所有的节点一次并且回到起始节点,使得连接这些节点的路径成本最低。
3.蚁群算法原理
假如蚁群中所有蚂蚁的数量为m,所有城市之间的信息素用矩阵pheromone表示,最短路径为bestLength,最佳路径为bestTour。每只蚂蚁都有自己的内存,内存中用一个禁忌表(Tabu)来存储该蚂蚁已经访问过的城市,表示其在以后的搜索中将不能访问这些城市;还有用另外一个允许访问的城市表(Allowed)来存储它还可以访问的城市;另外还用一个矩阵(Delta)来存储它在一个循环(或者迭代)中给所经过的路径释放的信息素;还有另外一些数据,例如一些控制参数(α,β,ρ,Q),该蚂蚁行走完全程的总成本或距离(tourLength),等等。假定算法总共运行MAX_GEN次,运行时间为t。
蚁群算法计算过程如下:
(1)初始化
设t=0,初始化bestLength为一个非常大的数(正无穷),bestTour为空。初始化所有的蚂蚁的Delt矩阵所有元素初始化为0,Tabu表清空,Allowed表中加入所有的城市节点。随机选择它们的起始位置(也可以人工指定)。在Tabu中加入起始节点,Allowed中去掉该起始节点。
(2)为每只蚂蚁选择下一个节点。
为每只蚂蚁选择下一个节点,该节点只能从Allowed中以某种概率(公式1)搜索到,每搜到一个,就将该节点加入到Tabu中,并且从Allowed中删除该节点。该过程重复n-1次,直到所有的城市都遍历过一次。遍历完所有节点后,将起始节点加入到Tabu中。此时Tabu表元素数量为n+1(n为城市数量),Allowed元素数量为0。接下来按照(公式2)计算每个蚂蚁的Delta矩阵值。最后计算最佳路径,比较每个蚂蚁的路径成本,然后和bestLength比较,若它的路径成本比bestLength小,则将该值赋予bestLength,并且将其Tabu赋予BestTour。
(公式1)
(公式2)
(公式3)
其中pij(t)表示选择城市j的概率,k表示第k个蚂蚁,τij (t)表示城市i,j在第t时刻的信息素浓度,ηij表示从城市i到城市j的可见度,ηij=1/dij,dij表示城市i,j之间的成本(或距离)。由此可见dij越小,ηij越大,也就是从城市i到j的可见性就越大。
Δτkij表示蚂蚁k在城市i与j之间留下的信息素。
Lk表示蚂蚁k经过一个循环(或迭代)锁经过路径的总成本(或距离),即tourLength,α,β,Q 均为控制参数。
(3)更新信息素矩阵
令t=t+nt,按照(公式3)更新信息素矩阵phermone。
(公式4)
τij(t+n)为t+n时刻城市i与j之间的信息素浓度。ρ为控制参数,Deltaij为城市i与j之间信息素经过一个迭代后的增量。并且有
(公式5)
其中Δτkij由公式计算得到。
(4)检查终止条件
如果达到最大代数MAX_GEN,算法终止,转到第(5)步;否则,重新初始化所有的蚂蚁的Delt矩阵所有元素初始化为0,Tabu表清空,Allowed表中加入所有的城市节点。随机选择它们的起始位置(也可以人工指定)。在Tabu中加入起始节点,Allowed中去掉该起始节点,重复执行(2),(3),(4)步。
(5)输出最优值
4.算法流程图
5.java实现
在该java实现中我们选择使用tsplib上的数据att48,这是一个对称tsp问题,城市规模为48,其最优值为10628.其距离计算方法如图(2)所示:
图2 att48距离计算方法
实现中,使用了两个java类,一个Ant类,一个ACO类。
Ant类
package com.gbs.bean;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Random;
/**
* 蚂蚁类
* Cloneable这个类为克隆类,使用Object的clone()方法
* @author gbs
*
*/
public class Ant implements Cloneable{
/**
* Vector与ArrayList一样,也是通过数组实现的,不同的是它支持线程的同步,
* 即某一时刻只有一个线程能够写Vector,避免多线程同时写而引起的不一致性,
* 但实现同步需要很高的花费,因此,访问它比访问ArrayList慢。
*/
private ArrayList<Integer> allowedCities;//允许访问的城市
private ArrayList<Integer> tabu;//禁忌表,记录已经访问过的城市
private int [][] distance;//距离矩阵
private double[][] delta; //信息素变化矩阵
private double alpha;
private double beta;
private int cityNum;//城市数量
private int tourLength;//路径的长度
private int firstCity; //起始城市
private int currentCity; //当前城市
public Ant(int cityNum) {
this.cityNum = cityNum;
this.tourLength = 0;
}
public Ant() {
this.cityNum = 30;
this.tourLength = 0;
}
/**
* 初始化蚂蚁,并为蚂蚁随机选择第一个城市
* @param distance
* @param a
* @param b
*/
public void init(int[][] distance,double a,double b) {
this.alpha = a;
this.beta = b;
this.distance = distance;
this.allowedCities = new ArrayList<Integer>();
this.tabu = new ArrayList<Integer>();
this.delta = new double[cityNum][cityNum];
for(int i = 0;i < this.cityNum;i++) {
Integer city = new Integer(i);
this.allowedCities.add(city);
for (int j = 0;j < this.cityNum;j++) {
this.delta[i][j] = 0.d;
}
}
Random random = new Random(System.currentTimeMillis());
this.firstCity = random.nextInt(this.cityNum);
for (Integer city:this.allowedCities) {
if(city.intValue() == this.firstCity) {
this.allowedCities.remove(city);
this.tabu.add(city);
break;
}
}
this.currentCity = this.firstCity;
}
/**
* 选择下一个城市
* @param pheromone 信息素矩阵
*/
public void selectNextCity(double[][] pheromone) {
double[] p = new double[this.cityNum];//转移概率
double sum = 0.d;//转移概率的分母
for (Integer city : this.allowedCities) {
sum += Math.pow(pheromone[this.currentCity][city.intValue()],
this.alpha)*Math.pow(1.d/this.distance[this.currentCity][city.intValue()], this.beta);
}
for (int i = 0; i < this.cityNum; i++) {
boolean flag = false;
for (Integer city : this.allowedCities) {
if(i == city.intValue()) {
p[i] = (double) ((Math.pow(pheromone[this.currentCity][i],
this.alpha)*Math.pow(1.d/this.distance[this.currentCity][i], this.beta))/sum);
flag = true;
break;
}
}
if(!flag)
p[i] = 0.d;
}
/**
* 如果每次都直接选择最大概率的城市作为下一个城市,就会使算法过早收敛,
* 最后停止搜索可能获得的仅仅是次优解,而使用轮盘赌可以提高算法的全局搜索能力,又不失局部搜索
* 所以这里选择轮盘赌选择下一个城市。参考《计算智能》清华大学出版社
*/
//轮盘赌选择下一个城市
double sumSelect = 0.d;
int selectCity = -1;
Random random = new Random(System.currentTimeMillis());
double selectP = random.nextDouble();
while(selectP == 0.f) {
selectP = random.nextDouble();
}
for(int i = 0;i < this.cityNum;i++) {
sumSelect += p[i];
if(sumSelect >= selectP) {
selectCity = i;
//从允许选择的城市中去除select city
this.allowedCities.remove(Integer.valueOf(selectCity));
//在禁忌表中添加select city
this.tabu.add(Integer.valueOf(selectCity));
//将当前城市改为选择的城市
this.currentCity = selectCity;
break;
}
}
}
/**
* 计算路径长度
* @return
*/
public int calculateTourLength() {
int length = 0;
for(int i = 0;i < this.tabu.size()-1;i++) {
length += this.distance[this.tabu.get(i).intValue()][this.tabu.get(i+1).intValue()];
}
return length;
}
public ArrayList<Integer> getAllowedCities() {
return allowedCities;
}
public void setAllowedCities(ArrayList<Integer> allowedCities) {
this.allowedCities = allowedCities;
}
public ArrayList<Integer> getTabu() {
return tabu;
}
public void setTabu(ArrayList<Integer> tabu) {
this.tabu = tabu;
}
public int[][] getDistance() {
return distance;
}
public void setDistance(int[][] distance) {
this.distance = distance;
}
public double[][] getDelta() {
return delta;
}
public void setDelta(double[][] delta) {
this.delta = delta;
}
public double getAlpha() {
return alpha;
}
public void setAlpha(double alpha) {
this.alpha = alpha;
}
public double getBeta() {
return beta;
}
public void setBeta(double beta) {
this.beta = beta;
}
public int getCityNum() {
return cityNum;
}
public void setCityNum(int cityNum) {
this.cityNum = cityNum;
}
public int getTourLength() {
return tourLength;
}
public void setTourLength(int tourLength) {
this.tourLength = tourLength;
}
public int getFirstCity() {
return firstCity;
}
public void setFirstCity(int firstCity) {
this.firstCity = firstCity;
}
public int getCurrentCity() {
return currentCity;
}
public void setCurrentCity(int currentCity) {
this.currentCity = currentCity;
}
@Override
public String toString() {
return "Ant [allowedCities=" + allowedCities + ", tabu=" + tabu + ", distance=" + Arrays.toString(distance)
+ ", delta=" + Arrays.toString(delta) + ", alpha=" + alpha + ", beta=" + beta + ", cityNum=" + cityNum
+ ", tourLength=" + tourLength + ", firstCity=" + firstCity + ", currentCity=" + currentCity + "]";
}
}
ACO类
package com.gbs.bean;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
/**
* 蚁群算法类
* @author gbs
*
*/
public class ACO {
private Ant[] ants; //蚂蚁
private int antNum; //蚂蚁数量
private int cityNum; //城市数量
private int MAX_GEN; //运行代数
private double[][] pheromone; //信息素矩阵
private int[][] distance; //距离矩阵
private int bestLength; //最佳长度
private int[] bestTour; //最佳路径
//三个参数
private double alpha;
private double beta;
private double rho;
public ACO() {
}
public ACO(int antNum, int cityNum, int mAX_GEN, double alpha, double beta, double rho) {
this.antNum = antNum;
this.cityNum = cityNum;
this.MAX_GEN = mAX_GEN;
this.alpha = alpha;
this.beta = beta;
this.rho = rho;
this.ants = new Ant[this.antNum];
}
public void init(String path) {
int []x;
int []y;
String buffer;
BufferedReader br;
try {
br = new BufferedReader(new InputStreamReader(new FileInputStream(path)));
this.distance = new int[this.cityNum][this.cityNum];
x = new int[cityNum];
y = new int[cityNum];
//读取城市的坐标
for (int i = 0; i < cityNum; i++) {
buffer = br.readLine();
String[] str = buffer.split(" ");
x[i] = Integer.valueOf(str[1]);
y[i] = Integer.valueOf(str[2]);
}
/**
* 计算距离矩阵 ,针对具体问题,距离计算方法也不一样,此处用的是att48作为案例,
* 它有48个城市,距离计算方法为伪欧氏距离,最优值为10628
*/
for(int i = 0;i < this.cityNum - 1;i++) {
for(int j = i + 1;j < this.cityNum;j++) {
double rij = Math.sqrt(((x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]))/10.0);
int tij = (int)Math.round(rij);
if(tij < rij)
tij++;
this.distance[i][j] = tij;
this.distance[j][i] = tij;
}
}
this.distance[this.cityNum-1][this.cityNum-1] = 0;
//初始化信息素矩阵
this.pheromone=new double[this.cityNum][this.cityNum];
for(int i = 0;i < this.cityNum;i++) {
for(int j = 0;j < this.cityNum;j++) {
this.pheromone[i][j] = 0.1d;
}
}
//初始化最优路径的长度
this.bestLength=Integer.MAX_VALUE;
//初始化最优路径
this.bestTour=new int[this.cityNum+1];
//随机放置蚂蚁
for(int i = 0;i < this.antNum;i++){
this.ants[i]=new Ant(this.cityNum);
this.ants[i].init(this.distance, this.alpha, this.beta);
}
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
/**
* 更新信息素
*/
private void updatePheromone() {
//信息素挥发
for(int i = 0;i < this.cityNum;i++)
for(int j = 0;j < this.cityNum;j++)
this.pheromone[i][j] = this.pheromone[i][j] * (1 - this.rho);
//信息素更新
for(int i = 0;i < this.cityNum;i++) {
for(int j = 0;j < this.cityNum;j++) {
for(int k = 0;k < this.antNum;k++) {
this.pheromone[i][j] += this.ants[k].getDelta()[i][j];
}
}
}
}
public void solve() {
for (int g = 0; g < this.MAX_GEN; g++) {
//每一只蚂蚁移动的过程
for (int i = 0; i < this.antNum; i++) {
for (int j = 0; j < this.cityNum; j++) {
this.ants[i].selectNextCity(this.pheromone);
}
this.ants[i].getTabu().add(this.ants[i].getFirstCity());
//计算蚂蚁获得的路径长度
this.ants[i].setTourLength(this.ants[i].calculateTourLength());
if(this.ants[i].getTourLength() < this.bestLength){
//保留最优路径
this.bestLength = this.ants[i].getTourLength();
System.out.println("第"+g+"代,发现新的解"+this.bestLength);
for(int k = 0;k < this.ants[i].getTabu().size();k++)
this.bestTour[k] = this.ants[i].getTabu().get(k).intValue();;
}
//更新信息素变化矩阵
for (int j = 0; j < this.ants[i].getTabu().size()-1; j++) {
this.ants[i].getDelta()[this.ants[i].getTabu().get(j).intValue()][this.ants[i].getTabu().get(j+1).intValue()] = (double) (1.0/this.ants[i].getTourLength());
this.ants[i].getDelta()[this.ants[i].getTabu().get(j+1).intValue()][this.ants[i].getTabu().get(j).intValue()] = (double) (1.0/this.ants[i].getTourLength());
}
}
//更新信息素
this.updatePheromone();
//重新初始化蚂蚁
for(int i = 0;i < this.antNum;i++){
this.ants[i].init(this.distance, this.alpha, this.beta);
}
}
//打印最佳结果
this.printOptimal();
}
public void printOptimal() {
System.out.println("The optimal length is: " + this.bestLength);
System.out.println("The optimal tour is: ");
for (int i = 0; i < this.bestTour.length; i++) {
System.out.println(this.bestTour[i]);
}
}
public Ant[] getAnts() {
return ants;
}
public void setAnts(Ant[] ants) {
this.ants = ants;
}
public int getAntNum() {
return antNum;
}
public void setAntNum(int antNum) {
this.antNum = antNum;
}
public int getCityNum() {
return cityNum;
}
public void setCityNum(int cityNum) {
this.cityNum = cityNum;
}
public int getMAX_GEN() {
return MAX_GEN;
}
public void setMAX_GEN(int mAX_GEN) {
MAX_GEN = mAX_GEN;
}
public double[][] getPheromone() {
return pheromone;
}
public void setPheromone(double[][] pheromone) {
this.pheromone = pheromone;
}
public int[][] getDistance() {
return distance;
}
public void setDistance(int[][] distance) {
this.distance = distance;
}
public int getBestLength() {
return bestLength;
}
public void setBestLength(int bestLength) {
this.bestLength = bestLength;
}
public int[] getBestTour() {
return bestTour;
}
public void setBestTour(int[] bestTour) {
this.bestTour = bestTour;
}
public double getAlpha() {
return alpha;
}
public void setAlpha(double alpha) {
this.alpha = alpha;
}
public double getBeta() {
return beta;
}
public void setBeta(double beta) {
this.beta = beta;
}
public double getRho() {
return rho;
}
public void setRho(double rho) {
this.rho = rho;
}
@Override
public String toString() {
return "ACO [ants=" + Arrays.toString(ants) + ", antNum=" + antNum + ", cityNum=" + cityNum + ", MAX_GEN="
+ MAX_GEN + ", pheromone=" + Arrays.toString(pheromone) + ", distance=" + Arrays.toString(distance)
+ ", bestLength=" + bestLength + ", bestTour=" + Arrays.toString(bestTour) + ", alpha=" + alpha
+ ", beta=" + beta + ", rho=" + rho + "]";
}
}
Test类:
package com.gbs.test;
import com.gbs.bean.ACO;
public class Test {
public static void main(String[] args) {
ACO aco = new ACO(200, 48, 2000, 1.d, 5.d, 0.5d);
aco.init("d://cities.txt");
aco.solve();
}
}
注:调试代码时遇到一个致命的问题就是忽略了float和double的精度。浪费了三四个小时debug居然是这个错误引起的,float的精度一旦不够,在java中会出现NAN和INFINITY。
https://www.cnblogs.com/zhisuoyu/archive/2016/03/24/5314541.html(此网址讲述了NAN和INFINITY的区别)。
6.存在问题
(1)对于大规模组合优化问题,算法的计算时间而且复杂。由于蚁群算法的时间复杂度是,因此在处理较大规模的组合优化问题时,运算量较大,时间较长。
(2)算法容易在某个或某些局部最优解的邻域附近发生停滞现象,造成早熟收敛,即搜索进行到一定程度后,所有蚂蚁发现的解完全一致,不能继续对解空间进一步搜索,不利于发现全局最优解。
(3)不能较好的解决连续域问题。
(4)由于蚁群算法中蚂蚁个体的运动过程的随机性,当群体规模设置较大时,很难在较短时间内从杂乱无章的路径中找出一条较好的路径。
(5)信息素更新策略,路径搜索策略和最优解保留策略都带有经验性,没有经过严格的理论论证。因此基本蚁群算法的求解效率不高、收敛性较差、求解结果具有较大的分散性。
附件:https://download.csdn.net/download/msc694955868/13123019