redis三(3-3)

11 篇文章 0 订阅

一、Redis键值设计

1.1优雅的key结构

Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:

  • 遵循基本格式:[业务名称]:[数据名]:[id]
  • 长度不超过44字节
  • 不包含特殊字符

例如:我们的登录业务,保存用户信息,其key是这样的:

  • 可读性强
  • 避免key冲突
  • 方便管理
  • 更节省内存: key是string类型,底层编码包含int、embstr和raw三种。embstr在小于44字节使用,采用连续内存空间,内存占用更小

1.2拒绝BigKey

什么是BigKey

BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:

  • Key本身的数据量过大:一个String类型的Key,它的值为5 MB。
  • Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个。
  • Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB。

推荐值:

  • 单个key的value小于10KB
  • 对于集合类型的key,建议元素数量小于1000

BigKey的危害:

 网络阻塞

  • 对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢  

数据倾斜

  • BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡

 Redis阻塞

  • 对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞  

CPU压力

  • 对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用

如何发现BigKey

 redis-cli --bigkeys

  • 利用redis-cli提供的--bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key

 scan扫描

  • 自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)  

第三方工具

  • 利用第三方工具,如 Redis-Rdb-Tools 分析RDB快照文件,全面分析内存使用情况  

网络监控

  • 自定义工具,监控进出Redis的网络数据,超出预警值时主动告警

 如何删除BigKey

BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。

 redis 3.0 及以下版本

如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey  

Redis 4.0以后

 Redis在4.0后提供了异步删除的命令:unlink

1.3恰当的数据类型

例1:比如存储一个User对象,我们有三种存储方式:

 例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?

存在的问题:

1.hash的entry数量超过500时,会使用哈希表而不是ZipList,内存占用较多。

2.可以通过hash-max-ziplist-entries配置entry上限。但是如果entry过多就会导致BigKey问题

 例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?

方案二:拆分为string类型:

存在的问题:

1.string结构底层没有太多内存优化,内存占用较多。

2.想要批量获取这些数据比较麻烦

 例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?

方案三:拆分为小的hash,将 id / 100 作为key, 将id % 100 作为field,这样每100个元素为一个Hash

 总结:

Key的最佳实践:

固定格式:[业务名]:[数据名]:[id]

足够简短:不超过44字节

不包含特殊字符 Value的最佳实践: 合理的拆分数据,拒绝BigKey 选择合适数据结构 Hash结构的entry数量不要超过1000 设置合理的超时时间

二、批处理优化

2.1Pipeline

大量数据导入的方式

一堆粮食要搬运到仓库,有几种办法?

单个命令的执行流程

一次命令的响应时间 = 1次往返的网络传输耗时 + 1次Redis执行命令耗时

 N条命令依次执行

N次命令的响应时间 = N次往返的网络传输耗时 + N次Redis执行命令耗时

 N条命令批量执行

N次命令的响应时间 = 1次往返的网络传输耗时 + N次Redis执行命令耗时

 MSET

Redis提供了很多Mxxx这样的命令,可以实现批量插入数据,例如:

  • mset
  • hmset

利用mset批量插入10万条数据:

注意:不要在一次批处理中传输太多命令,否则单次命令占用带宽过多,会导致网络阻塞

Pipeline

MSET虽然可以批处理,但是却只能操作部分数据类型,因此如果有对复杂数据类型的批处理需要,建议使用Pipeline功能:

 总结:

批量处理的方案:

  • 原生的M操作
  • Pipeline批处理

注意事项:

  • 批处理时不建议一次携带太多命令
  • Pipeline的多个命令之间不具备原子性

2.2集群下的批处理

集群下的批处理

如MSET或Pipeline这样的批处理需要在一次请求中携带多条命令,而此时如果Redis是一个集群,那批处理命令的多个key必须落在一个插槽中,否则就会导致执行失败。

三、服务端优化

3.1持久化配置

Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议:

1.用来做缓存的Redis实例尽量不要开启持久化功能

2.建议关闭RDB持久化功能,使用AOF持久化

3.利用脚本定期在slave节点做RDB,实现数据备份

4.设置合理的rewrite阈值,避免频繁的bgrewrite

5.配置no-appendfsync-on-rewrite = yes,禁止在rewrite期间做aof,避免因AOF引起的阻塞

部署有关建议:

1.Redis实例的物理机要预留足够内存,应对fork和rewrite

2.单个Redis实例内存上限不要太大,例如4G或8G。可以加快fork的速度、减少主从同步、数据迁移压力

3.不要与CPU密集型应用部署在一起

4.不要与高硬盘负载应用一起部署。例如:数据库、消息队列

3.2慢查询

慢查询:在Redis执行时耗时超过某个阈值的命令,称为慢查询。

 慢查询的阈值可以通过配置指定:

slowlog-log-slower-than:慢查询阈值,单位是微秒。默认是10000,建议1000 慢查询会被放入慢查询日志中,日志的长度有上限,可以通过配置指定:

slowlog-max-len:慢查询日志(本质是一个队列)的长度。默认是128,建议1000

修改这两个配置可以使用:config set命令:

查看慢查询日志列表:

  • slowlog len:查询慢查询日志长度
  • slowlog get [n]:读取n条慢查询日志
  • slowlog reset:清空慢查询列表

3.3命令及安全配置

Redis会绑定在0.0.0.0:6379,这样将会将Redis服务暴露到公网上,而Redis如果没有做身份认证,会出现严重的安全漏洞.

漏洞重现方式:Redis未授权访问配合SSH key文件利用分析 - 腾讯云开发者社区-腾讯云

漏洞出现的核心的原因有以下几点:

  • Redis未设置密码
  • 利用了Redis的config set命令动态修改Redis配置
  • 使用了Root账号权限启动Redis

为了避免这样的漏洞,这里给出一些建议:

1.Redis一定要设置密码

2.禁止线上使用下面命令:keys、flushall、flushdb、config set等命令。可以利用rename-command禁用。

3.bind:限制网卡,禁止外网网卡访问

4.开启防火墙

5.不要使用Root账户启动Redis

6.尽量不是有默认的端口

3.4内存配置

当Redis内存不足时,可能导致Key频繁被删除、响应时间变长、QPS不稳定等问题。当内存使用率达到90%以上时就需要我们警惕,并快速定位到内存占用的原因。

数据内存的问题

Redis提供了一些命令,可以查看到Redis目前的内存分配状态:

  • info memory
  • memory xxx

 内存缓冲区配置

内存缓冲区常见的有三种:

复制缓冲区:主从复制的repl_backlog_buf,如果太小可能导致频繁的全量复制,影响性能。通过repl-backlog-size来设置,默认1mb

AOF缓冲区:AOF刷盘之前的缓存区域,AOF执行rewrite的缓冲区。无法设置容量上限

客户端缓冲区:分为输入缓冲区和输出缓冲区,输入缓冲区最大1G且不能设置。输出缓冲区可以设置

默认的配置如下:

四、集群最佳实践

集群虽然具备高可用特性,能实现自动故障恢复,但是如果使用不当,也会存在一些问题:

1.集群完整性问题

2.集群带宽问题

3.数据倾斜问题

4.客户端性能问题

5.命令的集群兼容性问题

6.lua和事务问题

集群完整性问题

在Redis的默认配置中,如果发现任意一个插槽不可用,则整个集群都会停止对外服务:

为了保证高可用特性,这里建议将 cluster-require-full-coverage配置为false

集群带宽问题

集群节点之间会不断的互相Ping来确定集群中其它节点的状态。每次Ping携带的信息至少包括:

  • 插槽信息
  • 集群状态信息

集群中节点越多,集群状态信息数据量也越大,10个节点的相关信息可能达到1kb,此时每次集群互通需要的带宽会非常高。

解决途径:

1.避免大集群,集群节点数不要太多,最好少于1000,如果业务庞大,则建立多个集群。

2.避免在单个物理机中运行太多Redis实例

3.配置合适的cluster-node-timeout值

集群还是主从

集群虽然具备高可用特性,能实现自动故障恢复,但是如果使用不当,也会存在一些问题:

1.集群完整性问题

2.集群带宽问题

3.数据倾斜问题

4.客户端性能问题

5.命令的集群兼容性问题

6.lua和事务问题

注意:单体Redis(主从Redis)已经能达到万级别的QPS,并且也具备很强的高可用特性。如果主从能满足业务需求的情况下,尽量不搭建Redis集群。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值