一、Redis键值设计
1.1优雅的key结构
Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:
- 遵循基本格式:[业务名称]:[数据名]:[id]
- 长度不超过44字节
- 不包含特殊字符
例如:我们的登录业务,保存用户信息,其key是这样的:
- 可读性强
- 避免key冲突
- 方便管理
- 更节省内存: key是string类型,底层编码包含int、embstr和raw三种。embstr在小于44字节使用,采用连续内存空间,内存占用更小
1.2拒绝BigKey
什么是BigKey
BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:
- Key本身的数据量过大:一个String类型的Key,它的值为5 MB。
- Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个。
- Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB。
推荐值:
- 单个key的value小于10KB
- 对于集合类型的key,建议元素数量小于1000
BigKey的危害:
网络阻塞
- 对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢
数据倾斜
- BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
Redis阻塞
- 对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞
CPU压力
- 对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用
如何发现BigKey
redis-cli --bigkeys
- 利用redis-cli提供的--bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key
scan扫描
- 自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)
第三方工具
- 利用第三方工具,如 Redis-Rdb-Tools 分析RDB快照文件,全面分析内存使用情况
网络监控
- 自定义工具,监控进出Redis的网络数据,超出预警值时主动告警
如何删除BigKey
BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。
redis 3.0 及以下版本
如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey
Redis 4.0以后
Redis在4.0后提供了异步删除的命令:unlink
1.3恰当的数据类型
例1:比如存储一个User对象,我们有三种存储方式:
例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?
存在的问题:
1.hash的entry数量超过500时,会使用哈希表而不是ZipList,内存占用较多。
2.可以通过hash-max-ziplist-entries配置entry上限。但是如果entry过多就会导致BigKey问题
例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?
方案二:拆分为string类型:
存在的问题:
1.string结构底层没有太多内存优化,内存占用较多。
2.想要批量获取这些数据比较麻烦
例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?
方案三:拆分为小的hash,将 id / 100 作为key, 将id % 100 作为field,这样每100个元素为一个Hash
总结:
Key的最佳实践:
固定格式:[业务名]:[数据名]:[id]
足够简短:不超过44字节
不包含特殊字符 Value的最佳实践: 合理的拆分数据,拒绝BigKey 选择合适数据结构 Hash结构的entry数量不要超过1000 设置合理的超时时间
二、批处理优化
2.1Pipeline
大量数据导入的方式
一堆粮食要搬运到仓库,有几种办法?
单个命令的执行流程
一次命令的响应时间 = 1次往返的网络传输耗时 + 1次Redis执行命令耗时
N条命令依次执行
N次命令的响应时间 = N次往返的网络传输耗时 + N次Redis执行命令耗时
N条命令批量执行
N次命令的响应时间 = 1次往返的网络传输耗时 + N次Redis执行命令耗时
MSET
Redis提供了很多Mxxx这样的命令,可以实现批量插入数据,例如:
- mset
- hmset
利用mset批量插入10万条数据:
注意:不要在一次批处理中传输太多命令,否则单次命令占用带宽过多,会导致网络阻塞
Pipeline
MSET虽然可以批处理,但是却只能操作部分数据类型,因此如果有对复杂数据类型的批处理需要,建议使用Pipeline功能:
总结:
批量处理的方案:
- 原生的M操作
- Pipeline批处理
注意事项:
- 批处理时不建议一次携带太多命令
- Pipeline的多个命令之间不具备原子性
2.2集群下的批处理
集群下的批处理
如MSET或Pipeline这样的批处理需要在一次请求中携带多条命令,而此时如果Redis是一个集群,那批处理命令的多个key必须落在一个插槽中,否则就会导致执行失败。
三、服务端优化
3.1持久化配置
Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议:
1.用来做缓存的Redis实例尽量不要开启持久化功能
2.建议关闭RDB持久化功能,使用AOF持久化
3.利用脚本定期在slave节点做RDB,实现数据备份
4.设置合理的rewrite阈值,避免频繁的bgrewrite
5.配置no-appendfsync-on-rewrite = yes,禁止在rewrite期间做aof,避免因AOF引起的阻塞
部署有关建议:
1.Redis实例的物理机要预留足够内存,应对fork和rewrite
2.单个Redis实例内存上限不要太大,例如4G或8G。可以加快fork的速度、减少主从同步、数据迁移压力
3.不要与CPU密集型应用部署在一起
4.不要与高硬盘负载应用一起部署。例如:数据库、消息队列
3.2慢查询
慢查询:在Redis执行时耗时超过某个阈值的命令,称为慢查询。
慢查询的阈值可以通过配置指定:
slowlog-log-slower-than:慢查询阈值,单位是微秒。默认是10000,建议1000 慢查询会被放入慢查询日志中,日志的长度有上限,可以通过配置指定:
slowlog-max-len:慢查询日志(本质是一个队列)的长度。默认是128,建议1000
修改这两个配置可以使用:config set命令:
查看慢查询日志列表:
- slowlog len:查询慢查询日志长度
- slowlog get [n]:读取n条慢查询日志
- slowlog reset:清空慢查询列表
3.3命令及安全配置
Redis会绑定在0.0.0.0:6379,这样将会将Redis服务暴露到公网上,而Redis如果没有做身份认证,会出现严重的安全漏洞.
漏洞重现方式:Redis未授权访问配合SSH key文件利用分析 - 腾讯云开发者社区-腾讯云
漏洞出现的核心的原因有以下几点:
- Redis未设置密码
- 利用了Redis的config set命令动态修改Redis配置
- 使用了Root账号权限启动Redis
为了避免这样的漏洞,这里给出一些建议:
1.Redis一定要设置密码
2.禁止线上使用下面命令:keys、flushall、flushdb、config set等命令。可以利用rename-command禁用。
3.bind:限制网卡,禁止外网网卡访问
4.开启防火墙
5.不要使用Root账户启动Redis
6.尽量不是有默认的端口
3.4内存配置
当Redis内存不足时,可能导致Key频繁被删除、响应时间变长、QPS不稳定等问题。当内存使用率达到90%以上时就需要我们警惕,并快速定位到内存占用的原因。
数据内存的问题
Redis提供了一些命令,可以查看到Redis目前的内存分配状态:
- info memory
- memory xxx
内存缓冲区配置
内存缓冲区常见的有三种:
复制缓冲区:主从复制的repl_backlog_buf,如果太小可能导致频繁的全量复制,影响性能。通过repl-backlog-size来设置,默认1mb
AOF缓冲区:AOF刷盘之前的缓存区域,AOF执行rewrite的缓冲区。无法设置容量上限
客户端缓冲区:分为输入缓冲区和输出缓冲区,输入缓冲区最大1G且不能设置。输出缓冲区可以设置
默认的配置如下:
四、集群最佳实践
集群虽然具备高可用特性,能实现自动故障恢复,但是如果使用不当,也会存在一些问题:
1.集群完整性问题
2.集群带宽问题
3.数据倾斜问题
4.客户端性能问题
5.命令的集群兼容性问题
6.lua和事务问题
集群完整性问题
在Redis的默认配置中,如果发现任意一个插槽不可用,则整个集群都会停止对外服务:
为了保证高可用特性,这里建议将 cluster-require-full-coverage配置为false
集群带宽问题
集群节点之间会不断的互相Ping来确定集群中其它节点的状态。每次Ping携带的信息至少包括:
- 插槽信息
- 集群状态信息
集群中节点越多,集群状态信息数据量也越大,10个节点的相关信息可能达到1kb,此时每次集群互通需要的带宽会非常高。
解决途径:
1.避免大集群,集群节点数不要太多,最好少于1000,如果业务庞大,则建立多个集群。
2.避免在单个物理机中运行太多Redis实例
3.配置合适的cluster-node-timeout值
集群还是主从
集群虽然具备高可用特性,能实现自动故障恢复,但是如果使用不当,也会存在一些问题:
1.集群完整性问题
2.集群带宽问题
3.数据倾斜问题
4.客户端性能问题
5.命令的集群兼容性问题
6.lua和事务问题
注意:单体Redis(主从Redis)已经能达到万级别的QPS,并且也具备很强的高可用特性。如果主从能满足业务需求的情况下,尽量不搭建Redis集群。