自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 Pycharm 中使用Git详细教程

如果没有注册过github账号需要先注册一个。不使用翻墙软件,可以采用Steam ++ 加速Github进行注册。这边比较简单,加速后进入github官网按步骤注册就好。

2024-12-04 00:09:49 2571

原创 机器学习第六章学习笔记(下)

6.4 软间隔与正则化在之前讨论中,都假定训练样本在样本空间或特征空间中线性可分,即存在一个超平面将不同类样本完全划分开。然而,在现实任务中往往很难确定合适的核函数使得训练样本在特征空间中线性可分;退一步说,即使恰好找到了某个核函数使训练集在特征空间中线性可分,也很难断定这个貌似线性可分的结果不是由于过拟合所造成的。缓解该问题的一个方法是允许SVM在一些样本上出错,为此,引入“软间隔”(soft margin)的概念。如图:前面所说的SVM形式

2024-11-21 19:57:33 937

原创 机器学习第六章学习笔记(上)

由于这个章节内容比较多,所以我会分成上下两篇来记录。

2024-11-15 00:34:30 617

原创 机器学习第四章学习笔记

决策树(decision tree,亦称“判别树”)是一种常见的机器学习方法。顾名思义,其是基于树结构来进行决策的。决策过程的最终结论对应了我们所希望的判定结果。一般来说,一棵决策树包含一个根结点、若干个内部结点和若干个叶结点;对应于,其他都对应一个;每个结点包含的样本集合根据测试结果被划分到子结点中;包含。决其基本流程遵循简单且直观的(divide-and-conquer) 策略。如上图可见,决策树的生成是一个递归过程。

2024-11-04 23:51:38 983

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除