深度学习
文章平均质量分 75
以实战为线索,逐步深入深度学习的各个环节,从基础理论到高级应用,掌握数据处理、模型训练、性能优化以及模型部署的全流程。通过深入浅出的内容和实际案例分析,我们旨在帮助读者打造完整的深度学习项目工作流,提升工程化编码能力和创新思维能力。
matianlongg
这个作者很懒,什么都没留下…
展开
-
使用DSPy优化提示词
DSPy的优势在于,它能够将复杂的模型效果转化为较小模型的实现,显著提高了效率和可用性。与手动编写提示词相比,DSPy通过自动化和优化技术,降低了对专业知识的依赖,使得用户能够更轻松地获取高质量的输出。此外,DSPy的灵活性和适应性使其能够在多种应用场景中表现出色,极大地拓宽了模型的应用范围。总之,DSPy不仅提升了工作效率,还使得强大的模型效果更易于普及和应用。原创 2024-10-09 14:52:20 · 105 阅读 · 0 评论 -
使用伪代码和流程图优化提示词
prompt优化技巧-meramaid流程图在线编辑地址meramaid后台伪代码的概念可以更加广泛,比如用流程图的方式来表达逻辑。在开发软件时,我习惯在动手写代码之前,先把整个流程的前后关系都理清楚,这样可以避免在编写过程中出现问题,比如忘记某些步骤或导致逻辑不一致。如果一开始就直接写代码,往往容易在中途丢失思路,或者出现逻辑上的错误。而在实际开发过程中,如果我们先绘制流程图再写代码,整个逻辑会更加清晰明了。原创 2024-09-24 14:57:25 · 101 阅读 · 0 评论 -
实战PandasAI(一):PandasAI的安装与快速入门
这种方法的优势在于,生成的Python代码不仅能执行查询,还能展示查询的过程,这样用户就可以实时看到数据处理的每一步,并根据需要对提示词和流程进行针对性的调整。更重要的是,PandasAI 提供了一个透明的查询过程,通过 Python 代码的生成与执行,让用户能够清晰地了解每一步的操作。在以下代码示例中,PandasAI 被用于查询数据集中哪些国家的销售额最高,并生成相应的结果。在这个简单的示例中,PandasAI 会返回数据集中年龄的平均值、收入最高的城市,以及工作年限最长的人的姓名和所在城市。原创 2024-08-13 15:55:17 · 144 阅读 · 1 评论 -
实战Mem0(一):构建智能记忆层的AI应用
通过Mem0的长久记忆功能,个性化学习助手能够记录用户的学习偏好、进度和过去的互动。这使得学习助手可以提供定制化的学习建议和资源推荐,提升学习效率和效果。原创 2024-07-30 15:46:58 · 289 阅读 · 0 评论 -
实战GraphRAG(一):初步体验GraphRAG及其与RAG的对比
通过本文的初步体验,我们了解了GraphRAG与RAG的基本区别。GraphRAG利用知识图谱和社区摘要,提高了复杂信息处理和私有数据集推理的性能,虽然在搜索速度上略有不及,但其准确性和相关性表现更优。本文还通过实际示例展示了如何安装和配置GraphRAG,并执行全局搜索和本地搜索。GraphRAG在处理复杂查询和多源信息时展现了独特的优势,适合需要深度理解和综合分析的应用场景。未来,我们将进一步探讨其高级功能和优化方法。示例请参考GraphRAG文档。原创 2024-07-16 17:18:08 · 970 阅读 · 0 评论 -
实战LangChain(七):集成CrewAI——实现多代理协作
通过本篇文章的学习,我们成功地将CrewAI集成到LangChain项目中,实现了多代理协作的功能。这种多代理协作模式可以显著提升复杂任务的处理效率和质量。原创 2024-05-27 12:34:19 · 535 阅读 · 0 评论 -
智能代理四大范式解析
吴恩达在2024年红杉资本人工智能峰会上提出的智能代理四大范式,为我们展示了AI技术在不同应用领域的核心方法和实践。这些范式分别是反思(Reflection)、工具使用(Tool Use)、规划(Planning)和多代理协作(Multi-Agent Collaboration)。通过结合这些范式,未来的AI系统将具备更高的适应性和效率,能够在复杂多变的现实世界中解决更具挑战性的问题。原创 2024-05-23 16:53:44 · 233 阅读 · 0 评论 -
实战LangChain(六):深入LangGraph的高级功能与最佳实践
本文通过具体的实战示例介绍了LangGraph中的流式返回与持久化功能,这些功能为构建高性能和高可靠性的应用提供了强大的支持。通过继续探索和利用这些高级特性,开发者可以为用户创造出更加丰富和响应迅速的应用体验。接下来的文章将进一步探讨LangGraph的其他高级应用,敬请期待。原创 2024-05-12 15:32:10 · 488 阅读 · 0 评论 -
实战LangChain(五):LangGraph中的节点类型与动态调用
运行initial_state = {"chat_history": [HumanMessage(content="请介绍订单查询系统")]}输出[HumanMessage(content='请介绍订单查询系统'),HumanMessage(content='订单查询系统是一种信息管理系统,它允许用户通过各种方式(如网站、移动应用、电话或现场服务)查询和跟踪他们的订单状态。这种系统广泛应用于电子商务、物流、餐饮服务、制造业和其他需要处理订单的行业。订单查询系统的主要目的是提供实时的订单信息。原创 2024-04-24 17:20:56 · 319 阅读 · 0 评论 -
实战LangChain(四):LangGraph入门——状态管理与基础结构
本文通过详细介绍了LangGraph库的使用,展示了如何利用它增强聊天机器人的对话能力。通过创建一个状态管理的图形,并在图形中设置节点和边来形成对话循环,我们能够实现一个有状态的、能够进行复杂交互的聊天机器人。状态管理: 有效管理聊天状态,使得对话能够在多个交互中保持连贯性。多参与者协调: 在多个节点之间顺畅地传递信息,保证对话的流畅和逻辑性。循环逻辑: 支持循环操作,适合需要持续交互的场景。状态管理: 有效管理聊天状态,使得对话能够在多个交互中保持连贯性。多参与者协调。原创 2024-04-12 10:52:44 · 317 阅读 · 0 评论 -
实战LangChain(三):深化交互——利用Neo4j提升聊天机器人的对话能力
通过整合Neo4j图数据库与LangChain,我们有效解决了聊天机器人在处理复杂查询和理解用户需求方面的痛点。这种结合不仅提升了机器人的对话质量,还使得对话体验更加自然和流畅。未来,这一进步将引领聊天机器人技术向更高智能和个性化的方向发展。原创 2024-03-26 11:05:19 · 923 阅读 · 0 评论 -
实战LangChain(二):探索RAG——为聊天机器人注入知识
Retrieval Augmented Generation (RAG) 技术为解决自然语言处理的复杂任务提供了一种新颖的方法。尽管面临挑战,但随着技术的不断发展和优化,RAG有望在提高信息检索和内容生成质量方面发挥更大的作用。通过不断探索和创新,我们有理由相信,RAG将在未来的人工智能发展中占据重要位置,为人机交互带来更多的可能性。原创 2024-03-13 09:43:43 · 494 阅读 · 0 评论 -
实战LangChain(一):构建您的第一个聊天机器人
实战LangChain(一):构建您的第一个聊天机器人。原创 2024-02-26 09:40:36 · 408 阅读 · 0 评论 -
ChatDev: 革命性的虚拟软件公司,重塑代码创造的未来
在数字化时代的浪潮中,ChatDev站在了技术革新的前沿,开创了一个虚拟软件公司的全新概念。通过集成先进的大型语言模型(LLM)和模拟多智能体协作,ChatDev打破了传统软件开发的局限,提供了一个易于使用、高度可定制且可扩展的开发框架。从需求分析到产品交付,ChatDev内部的智能体角色——包括CEO、CTO、程序员和测试员——以前所未有的协同方式工作,展现了群体智能在软件创造中的巨大潜力。无论是研究人员寻求理解AI在软件开发中的应用,还是开发者探索自动化编码的新途径,ChatDev都开辟了一片无限可能的原创 2024-02-19 17:53:26 · 726 阅读 · 0 评论 -
AI小镇大冒险:探索ChatDev中的虚拟生命与社交奇迹
欢迎踏入ChatDev,一个由前沿AI技术驱动的虚拟小镇,这里居住着25个独一无二的生成代理——每一个都拥有自己的故事、梦想、以及日常生活。在这个充满活力的小镇中,代理们醒来、吃早餐、上班,艺术家在画布上挥洒创意,作家笔下生花。他们不仅能够形成意见、相互交流,还能回忆和反思过去,展现出一个丰富多彩的虚拟社会。通过论文、Github资源和引人入胜的DEMO展示,ChatDev小镇不仅仅是技术的展示,它是对未来可能性的一种探索,邀请您一同见证AI如何在模拟真实世界中开创新篇章。跟随我们,一起揭开AI如何在Cha原创 2024-02-19 17:36:59 · 194 阅读 · 0 评论 -
项目场景 with ERRTYPE = cudaError CUDA failure 999 unknown error
3.试试重装下驱动,卸载了11.2的时候通过nvidia-smi发现之前10.2的驱动还存在。1.刚开始以为是onnxruntime-gpu版本问题升级到了1.12还是报错。cuda11.2(之前是10.2)4.是因为之前的驱动没有卸载干净。2.网上又说是不兼容的问题。...原创 2022-08-01 18:38:36 · 1572 阅读 · 0 评论 -
项目场景:nvidia-smi Unable to datemine the device handle for GPU 0000:01:00.0: Unknow Error
项目场景:nvidia-smi Unable to datemine the device handle for GPU 0000:01:00.0: Unknow Error原创 2022-07-21 17:07:22 · 4116 阅读 · 0 评论 -
pytorch yolov5 训练自定义数据
环境python: 3.9.7torch: 1.10.2labelimg: 1.8.6paddleocr 有三种模型 det 检测 cls 方向 rec 识别安装miniconda创建环境安装完以后进入环境二、安装环境pytorchyolov5测试一下选择模型https://github.com/ultralytics/yolov5/releases模型参数我使用的模型是三、标注图片我使用的labelimg标注完以后会有两个目录、一个存图片、一个存tx原创 2022-07-05 17:44:24 · 382 阅读 · 1 评论 -
【PaddlePaddle】 PaddleDetection 人脸识别 自定义数据集
使用paddleDetection实现人脸识别使用paddleDetection人脸识别PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。PaddleDetection模块化地实现了多种主流目标检测算法,提供了丰富的数据增强策略、网络模块组件(如骨干网络)、损失函数等,并集成了模型压缩和跨平台高性能部署能力。经过长时间产业实践打磨,PaddleDetection已拥有顺畅、卓越的使用体验,被工业质检、遥感图像检测、无人巡检、新零售、原创 2022-07-04 18:40:16 · 1885 阅读 · 0 评论 -
【PaddleClas】常用命令
需要修改 build_product.yaml3.预测4.导出可选参数列表以下列表可以通过查看原创 2022-07-04 18:38:21 · 347 阅读 · 0 评论 -
paddleOcr 训练自定义数据
paddleOcr 训练自定义数据文章目录paddleOcr 训练自定义数据前言一、创建环境二、安装环境三、使用ppocrlabel标注图片1.打开图片目录2.导出标记结果、导出识别结果四、训练1.切分数据2.修改训练的模型 yml3.开始训练五、已经训练的模型,有了新数据需要继续训练1.使用恢复训练2.使用迁移学习总结前言环境python: 3.7.5paddlepaddle-gpu: 2.2.2paddleocr: 2.4.0.1#paddlepaddlehttps://www.pa原创 2022-04-07 11:36:10 · 4314 阅读 · 4 评论 -
pytorch 训练 RuntimeError Unable to find a valid cuDNN algorithm to run convolution
pytorch 训练 RuntimeError: Unable to find a valid cuDNN algorithm to run convolutionpytorch 训练 RuntimeError: Unable to find a valid cuDNN algorithm to run convolution# 问题描述:python:3.95pytorch:1.10.2python train.py --img 640 --batch 64 --epochs 600 --d原创 2022-02-23 14:55:20 · 12857 阅读 · 0 评论 -
python 多线程与多进程 threading、multiprocessing
python 多线程与多进程 threading、multiprocessing多线程: 线程是独立的处理流程,可以和系统的其他线程并行或并发地执行。多线程可以共享数据和资源,利用所谓的共享内存空间。线程和进程的具体实现取决于你要运行的操作系统,但是总体来讲,我们可以说线程是包含在进程中的,同一进程的多个不同的线程可以共享相同的资源。相比而言,进程之间不会共享资源。每一个线程基本上包含3个元素:程序计数器,寄存器和栈。与同一进程的其他线程共享的资源基本上包括数据和系统资源。每一个线程也有自己原创 2021-12-27 14:26:23 · 1186 阅读 · 0 评论 -
【PaddleDetection】 常用命令
【PaddleDetection】 常用命令1.训练#-o pretrain_weights 迁移学习#--eval 边训练边测试#--use_vdl 使用vdl#--vdl_log_dir vdl地址python -u tools/train.py -c configs/ppyolo/ppyolo_r50vd_dcn_voc.yml -o pretrain_weights=/home/aiuser/mtl/workspace/detection/PaddleDetection/output/p原创 2021-07-14 17:55:49 · 667 阅读 · 0 评论 -
项目场景:paddlepaddle FatalError Segmentation fault is detected by the operating system
项目场景:paddlepaddle FatalError: Segmentation fault is detected by the operating system.paddlepaddle cpu运行infer.py正常 gpu运行infer.py报错# 问题描述:环境paddlepaddle-gpu 2.1.0.post101python 3.8.5cuda 10.1cudnn 8.0.5C++ Traceback (most recent call last):--原创 2021-06-11 10:03:17 · 32086 阅读 · 11 评论 -
项目场景:paddlepaddle Cannot load cudnn shared library. Cannot invoke method cudnnGetVersion
项目场景:paddlepaddle Cannot load cudnn shared library. Cannot invoke method cudnnGetVersionCannot load cudnn shared library. Cannot invoke method cudnnGetVersion# 问题描述:W0607 18:34:01.017473 30177 dynamic_loader.cc:267] The third-party dynamic library (lib原创 2021-06-07 19:40:33 · 2214 阅读 · 0 评论 -
烟尘识别 python
烟尘识别 python提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录烟尘识别 python一、素材二、python效果总结总结提示:以下是本篇文章正文内容,下面案例可供参考一、素材二、pythondef check(frame1,frame2): im1 = cv2.resize(frame1, (720, 480)) im2 = cv2.resize(frame2, (720,原创 2021-05-28 09:59:47 · 646 阅读 · 2 评论 -
paddleDetection 训练自定义数据集 第二章 开始训练
paddleDetection 训练自定义数据集 第二章 开始训练 上一章 数据集制作文章目录paddleDetection 训练自定义数据集 第二章 开始训练一、环境二、安装1.安装miniconda2.安装paddlepaddle3.下载paddleDetection三、训练自定义数据集1.首先选择预训练模型,然后修改配置文件2.训练3.导出模型总结# 前言使用paddleDetection训练自定义数据集。提示:以下是本篇文章正文内容,下面案例可供参考一、环境paddlepad原创 2021-04-12 17:19:14 · 1017 阅读 · 0 评论 -
paddleDetection 训练自定义数据集 第一章VOC数据集制作
paddleDetection 训练自定义数据集 第一章VOC数据集制作提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加第一章 VOC数据集制作提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录paddleDetection 训练自定义数据集 第一章VOC数据集制作一、使用步骤1.使用labelimg标注2.整理数据3.划分训练集测试集总结# 前言使用paddleDetection训练自定义数据集。提示:以下是本篇文章正文内容,下面案例可供参考一原创 2021-04-01 17:44:22 · 1568 阅读 · 0 评论 -
Tacotron2+Tensorflow1.1+FALSK 语音合成
Tacotron2+Tensorflow1.1+FALSK 语音合成背景 需要语音播报设备的名称和异常状态环境Tacotron2Tensorflow1.1python3.6miniconda4.8.3标贝数据源安装与配置首先安装miniconda1.下载,使用清华下载源,进入miniconda下载页面 https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/ https://mirrors.tuna.tsinghua.edu.原创 2021-01-26 17:46:24 · 1087 阅读 · 0 评论 -
PaddleHub+PaddleOCR+FALSK 文字识别
PaddleHub+PaddleOCR+FALSK 文字识别背景 识别验证码环境paddlepaddle2.0paddlehub2.0python3.7miniconda4.8.3shapely1.7.1pyclipper1.2.1安装与配置首先安装miniconda1.下载,使用清华下载源,进入miniconda下载页面 https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/ https://mirrors.tuna.t原创 2021-03-04 11:13:52 · 2059 阅读 · 1 评论 -
Paddlpaddle+DeepSpeech2自动语音识别部署
Paddlpaddle+DeepSpeech2自动语音识别部署背景 语音识别环境DeepSpeech2Paddlpaddle1.8.5Python 2.7Nvidia-dockerubuntu1~18.04安装与配置可以不使用nvidia-docker,直接跳到第五步1.首先安装nvidia-dockercurl https://get.docker.com | shsudo systemctl start docker && sudo systemctl e原创 2021-02-23 11:43:32 · 3783 阅读 · 1 评论