差分约束系统 Dijkstra模板(2)

/**
差分约束 Dijkstra 模板(数组)
这题用vector会超时,后来才知道这个叫链式前向星
差分约束感觉这个博客写的比较好:http://blog.csdn.net/xuezhongfenfei/article/details/8685313
**/

#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
using namespace std;
const int INF=1<<27;
const int maxn=30005;

struct HeapNode//优先队列的节点
{
   int d,u;
   bool operator < (const HeapNode& rhs) const
   {
      return d>rhs.d;
   }
};

struct Edge
{
   int next,to,dist; //next表示从同一个点出发相邻的边
}edges[150005];

struct Dijkstra
{
   int n,m,total;//点数和边数
   int head[maxn]; //每个点出发的边编号(从0开始编号)
   bool done[maxn]; //是否已经永久标号
   int d[maxn]; //s到各个点之间的距离
   int p[maxn]; //最短路中的上一条边

   void init(int n)
   {
      this->n=n;
      memset(head,-1,sizeof(head));
      total=0;
   }

   void AddEdge(int from,int to,int dist)
   {
      edges[total].to=to;
      edges[total].dist=dist;
      edges[total].next=head[from];
      head[from]=total++;
   }

   void dijkstra(int s)//求s到所有点的距离
   {
      priority_queue<HeapNode> Q;
      for(int i=0;i<n;i++) d[i]=INF;
      d[s]=0;
      memset(done,0,sizeof(done));
      Q.push((HeapNode){0,s});
      while(!Q.empty())
      {
         HeapNode x=Q.top();
         Q.pop();
         int u=x.u;
         if(done[u]) continue;
         done[u]=true;
         for(int i=head[u];i!=-1;i=edges[i].next)
         {
            Edge& e=edges[i];
            if(d[e.to]>d[u]+e.dist)
            {
               d[e.to]=d[u]+e.dist;
               p[e.to]=u;
               Q.push((HeapNode){d[e.to],e.to});
            }
         }
      }
   }
};

int main()
{
   int n,m,i,x,y,z;
   Dijkstra solver;
   scanf("%d%d",&n,&m);
   solver.init(n);
   for(i=0;i<m;i++)
   {
      scanf("%d%d%d",&x,&y,&z);
      solver.AddEdge(x-1,y-1,z);
   }
   solver.dijkstra(0);
   printf("%d\n",solver.d[n-1]);
   return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值