1015 Reversible Primes (20分)

可逆素数判断算法
本文介绍了一种算法,用于判断一个数在特定进制下是否为可逆素数。可逆素数是指一个素数在任何进制下翻转后仍然是素数。文章详细解释了算法的实现过程,包括如何将十进制数转换为指定进制,以及如何判断一个数是否为素数。

reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.

Now given any two positive integers N (<10​5​​) and D (1<D≤10), you are supposed to tell if N is a reversible prime with radix D.

Input Specification:

The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.

Output Specification:

For each test case, print in one line Yes if N is a reversible prime with radix D, or No if not.

Sample Input:

73 10
23 2
23 10
-2

Sample Output:

Yes
Yes
No

题目大意:

题目给出一个数以及一个进制,要求你判断该数是否为可逆素数。所谓可逆素数,即本身是素数,且转化为某个进制后进行翻转,仍为素数。

解题思路:

首先判断给出的数(十进制形式)是否为素数,若不是,则直接输出No;

将该数转化为题目给出的某种进制的形式,使用string存储进制位,因为转化进制的过程中本来就是翻转的,因此后面可省略翻转的步骤(转换进制时原本需要将得到的字符串翻转后才是正确的转换结果);

将转换后的数再转换为十进制,判断是否为素数(0和1既不是素数也不是合数)。

代码如下:

#include<iostream>
#include<cstdio>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std;

string changeToRadix(int number,int radix){
	string s;
	int a = number;
	while(a){
		s += (a % radix + '0');
		a = a / radix;
	}
	return s; //本身就是翻转的形式,因此后面不需要再进行翻转 
}

int changeToDecimal(string strNum,int radix){
	int sum = 0;
	for(int i = 0 ; i < strNum.length() ; i ++){
		sum += (strNum[i]-'0') * pow(radix,strNum.length()-i-1);
	}
	return sum;
}

bool judge(int number){
	if(number == 0 || number == 1)
		return false;
	for(int i = 2 ; i <= sqrt(number) ; i ++){
		if(number % i == 0)
			return false;
	}
	return true;
}

int main(){
	int number,radix;
	while(scanf("%d%d",&number,&radix) && number >= 0)
	{
		if(judge(number) == false)
			printf("No\n");
		else{
			string strNum = changeToRadix(number,radix);//转化为D进制 
			int newNum = changeToDecimal(strNum,radix);
			if(judge(newNum))
				printf("Yes\n");
			else
				printf("No\n"); 
		}
	}
	return 0;
}

 

内容概要:本文详细介绍了如何使用Hugging Face Transformers库进行大模型推理,涵盖环境配置、模型下载、缓存管理、离线使用、文本生成、推理pipeline及模型量化技术。重点讲解了使用LLMs进行自回归生成的核心流程,包括token选择策略、生成参数配置(如max_new_tokens、do_sample)、填充方式(左填充的重要性)以及常见陷阱的规避方法。同时深入探讨了多种量化技术(如GPTQ、AWQ、bitsandbytes的4位/8位量化),并通过实例演示了如何加载本地模型、应用聊天模板、结合Flash Attention优化性能,并实现CPU-GPU混合卸载以应对显存不足的问题。; 适合人群:具备Python编程基础和深度学习基础知识,熟悉Transformer架构,从事NLP或大模型相关工作的研究人员、工程师和技术爱好者;尤其适合需要在资源受限环境下部署大模型的开发者。; 使用场景及目标:①掌握Hugging Face Transformers库的核心API,实现大模型的本地加载与高效推理;②理解和避免大模型生成过程中的常见问题(如输出过短、重复生成、填充错误等);③应用量化技术降低大模型内存占用,实现在消费级GPU或CPU上的部署;④构建支持批量处理和多模态任务的推理流水线。; 阅读建议:此资源理论与实践紧密结合,建议读者边阅读边动手实践,复现文中的代码示例,并尝试在不同模型和硬件环境下进行调优。重点关注生成配置、量化参数和设备映射策略,结合具体应用场景灵活调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值