对齐 Align解释

文章讨论了内存对齐的概念,特别是在Linux2.6.30.4内核中的实现。ALIGN宏用于以指定参数a为边界对齐变量x,确保其符合2^n的倍数特性。文中通过示例解释了上界对齐和下界对齐的区别,并展示了在页面对齐和skb数据分配对齐中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/* @a is a power of 2 value */

#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))

#define __ALIGN_KERNEL(x, a) __ALIGN_KERNEL_MASK(x, (typeof(x))(a) - 1)

#define __ALIGN_KERNEL_MASK(x, mask) (((x) + (mask)) & ~(mask))

#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))

#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))

#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))

#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)

size = ALIGN(size, s->align);

#define ALIGN(x,a) (((x)+(a)-1)&~(a-1))

就是以a為上界對齊的意思。舉個例子4k頁面邊界的例子,即:

a=4096, x = 3888,那麼以上界對齊為4096。

x = 4096, 结果為4096.

x = 4222, 结果為8192.

另外還有一種以下界對齊的方式 #define ALIGN(x,a) ((x)&~(a-1))

a=4096, x = 3888,结果為0.

x = 4095,结果為0

x = 4096,结果為4096

x = 4222,结果為4096.

对于正整数2^n(n>1)来说,存在这样的特性,如果整数X是2^n的整数倍,则X的二进制形式的低n位为0, 如果X不是2^n的整数倍,则X与(~(2^n-1))进行与运算可以得到一个与X相近的是2^n整数倍的正整数。这个特性经常用于内存分配时对齐。如果是上对齐,则需要先加上2^n-1,再进行上述运算。

在linux2.6.30.4中,在include/Linux/kernel.h文件中,ALIGN宏的定义如下:

#define ALIGN(x,a) __ALIGN_MASK(x,(typeof(x))(a)-1)

#define __ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))

上面代码中,typeof(x)表示取x的类型,如果x是int,则typeof(x)为int。(typeof(x))(a)-1,表明把a转化为x的类型,并减1,作为对齐掩码。不考虑类型,上述代码可以简化为如下:

#define ALIGN(x,a) (((x)+(a)-1)&~(a-1))

上面的计算方法在linux等代码中也常常可以看到,下面给出几个例子:

(1) 当分配地址addr时, 要将该地址以size为倍数对齐, 而且要得到是比addr大的值, 则使用_ALIGN宏:

#define _ALIGN(addr,size)(((addr)+(size)-1)&(~((size)-1)))

(2) 与页面对齐相关的宏

#define PAGE_SIZE 4096

#definePAGE_MASK (~(PAGE_SIZE-1))

#define PAGE_ALIGN(addr) -(((addr)+PAGE_SIZE-1)& PAGE_MASK)

(3) 与skb分配时对齐相关的宏

#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES -1)) & ~(SMP_CACHE_BYTES - 1))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值