题目描述
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note: The solution set must not contain duplicate quadruplets.
For example, given array S = [1, 0, -1, 0, -2, 2], and target = 0.
A solution set is:
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
题目解析
思路一:
先利用map特性排序,以第i个为头,从右边找是否存在3sum。在3sum中同样使用2sum。
但是超时了,但是思路应该是对的,时间复杂度为O(n^3)。
思路二:
看了题目的标签有 twopointer,将2sum过程改用twopointer方法。使用两个循环;
% 1. 避免重复
if(i>0&&nums[i]==nums[i-1])continue;
% 2. 在循环开始时进行检查
if(nums[i]+nums[i+1]+nums[i+2]+nums[i+3]>target) break;
if(nums[i]+nums[cnt-3]+nums[cnt-2]+nums[cnt-1]<target) continue;
代码(思路一)
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int> >ans_set;
vector<int> ans(4,0);
map<int,int>nums_map;
for(int it:nums)
{
nums_map[it]++;
}
for(auto it = nums_map.begin();it!=nums_map.end();it++)
{
ans[0]=it->first;
int threesum = target - it->first;
find_3sum(ans_set,ans,nums_map,threesum);
}
return ans_set;
}
void find_3sum(vector<vector<int> >&ans_set,vector<int> ans,map<int,int>&nums_map,int threesum)
{
nums_map[ans[0]]--;
for(auto it=nums_map.find(ans[0]);it!=nums_map.end();it++)
{
if(it->second<=0)
{
continue;
}
ans[1]=it->first;
int twosum = threesum - it->first;
find_2sum(ans_set,ans,nums_map,twosum);
}
nums_map[ans[0]]++;
return;
}
void find_2sum(vector<vector<int> >&ans_set,vector<int> ans,map<int,int>&nums_map,int twosum)
{
nums_map[ans[1]]--;
for(auto it=nums_map.find(ans[1]);it!=nums_map.end();it++)
{
if(it->second<=0)
{
continue;
}
int p = twosum - it->first;
if(nums_map.count(p)>0)
{
if(p>it->first||p==it->first&&it->second>1)
{
ans[2] = it->first;
ans[3] = p;
ans_set.push_back(ans);
}
}
}
nums_map[ans[1]]++;
return;
}
};
代码(思路二)
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
sort(nums.begin(),nums.end());
vector<vector<int> >ans_set;
vector<int> ans(4,0);
int cnt = nums.size();
for(int i = 0;i < cnt-3;i++)
{
if(i>0&&nums[i]==nums[i-1])
{
continue;
}
if(nums[i]+nums[i+1]+nums[i+2]+nums[i+3]>target) break;
if(nums[i]+nums[cnt-3]+nums[cnt-2]+nums[cnt-1]<target) continue;
for(int j = i+1;j < cnt-2;j++)
{
if(j>i+1&&nums[j]==nums[j-1])
{
continue;
}
if(nums[i]+nums[j]+nums[j+1]+nums[j+2]>target) break;
if(nums[i]+nums[j]+nums[cnt-2]+nums[cnt-1]<target) continue;
int p = j+1;
int q = cnt-1;
while(p<q)
{
if(nums[i]+nums[j]+nums[p]+nums[q]>target)
{
q--;
while(nums[q]==nums[q+1]&&p<q)
{
q--;
}
}
else if(nums[i]+nums[j]+nums[p]+nums[q]<target)
{
p++;
while(nums[p]==nums[p-1]&&p<q)
{
p++;
}
}
else
{
ans[0]=nums[i];
ans[1]=nums[j];
ans[2]=nums[p];
ans[3]=nums[q];
ans_set.push_back(ans);
q--;
while(nums[q]==nums[q+1]&&p<q)
{
q--;
}
p++;
while(nums[p]==nums[p-1]&&p<q)
{
p++;
}
}
}
}
}
return ans_set;
}
};