-
输入:
-
输入可能包含多个测试样例,输入以EOF结束。
对于每个测试案例,输入的第一行为一个整数n(0<=n<=1000,n代表将要输入的二叉树节点的个数(节点从1开始编号)。接下来一行有n个数字,代表第i个二叉树节点的元素的值。接下来有n行,每行有一个字母Ci。
Ci=’d’表示第i个节点有两子孩子,紧接着是左孩子编号和右孩子编号。
Ci=’l’表示第i个节点有一个左孩子,紧接着是左孩子的编号。
Ci=’r’表示第i个节点有一个右孩子,紧接着是右孩子的编号。
Ci=’z’表示第i个节点没有子孩子。
-
输出:
-
对应每个测试案例,
按照前序输出其孩子节点的元素值。
若为空输出NULL。
-
样例输入:
-
7 8 6 10 5 7 9 11 d 2 3 d 4 5 d 6 7 z z z z
-
样例输出:
-
8 10 11 9 6 7 5
#include <stdio.h> #include <stdlib.h> #define MAX 1001 typedef struct node{ int data; struct node *lchild; struct node *rchild; }biNode,*biTree; //创建树节点 void createTreeNode(biNode **t,int data){ *t = (biNode*)malloc(sizeof(biNode)); (*t) -> data = data; (*t) -> lchild = (*t) -> rchild = NULL; } //连接树的各个节点 void connectTreeNode(biNode *t,biNode *left,biNode *right){ if(t != NULL){ t -> lchild = left; t -> rchild = right; } } //前序遍历二叉树 void preOrder(biNode *root){ if(root != NULL){ printf(" %d",root -> data); preOrder(root -> lchild); preOrder(root -> rchild); } } //交换二叉树的镜像 void mirrorRecursively(biNode **t){ if((*t) == NULL) return; if((*t) -> lchild == NULL && (*t) -> rchild == NULL) return; biNode *temp = (*t) -> lchild; (*t) -> lchild = (*t) ->rchild; (*t) -> rchild = temp; if((*t) -> lchild) mirrorRecursively(&((*t)->lchild)); if((*t) -> rchild) mirrorRecursively(&((*t)->rchild)); } int main(){ int n,i,left,right; int *a; char child; biNode *tree[MAX]; while(scanf("%d",&n)!=EOF){ if(n == 0){ printf("NULL\n"); }else{ a = (int*)malloc(n*sizeof(int)); for(i = 0;i < n;i++){ scanf("%d",&a[i]); createTreeNode(&tree[i],a[i]); } free(a); for(i = 0;i < n;i++){ scanf("%1s",&child); if(child == 'd'){ scanf("%d%d",&left,&right); connectTreeNode(tree[i], tree[left-1],tree[right-1]); }else if(child == 'l'){ scanf("%d",&left); connectTreeNode(tree[i], tree[left-1],NULL); }else if(child == 'r'){ scanf("%d",&right); connectTreeNode(tree[i], NULL,tree[right-1]); }else if(child == 'z'){ connectTreeNode(tree[i],NULL,NULL); } } //交换树的镜像 mirrorRecursively(&tree[0]); printf("%d",tree[0]->data); preOrder(tree[0]->lchild); preOrder(tree[0]->rchild); printf("\n"); } } return 0; }