2021-07-19动手学数据分析第二章:第四节数据可视化

画图在jupyter中显示

%matplotlib inline

导入画图用的包,

import matplotlib.pyplot as plt

text = pd.read_csv(r’result.csv’)
r就是原模原样的读取,不转义,否则路径中/会被当成转义字符

2.7.2 任务二:可视化展示男女中生存人数分布情况(用柱状图试试)。

sex = text.groupby('Sex')['Survived'].sum()
sex.plot.bar()
plt.title('survived_count')
plt.show()

2.7.3 任务三:可视化展示男女中生存人与死亡人数的比例图(用柱状图试试)。这个图挺特别

# 提示:计算男女中死亡人数 1表示生存,0表示死亡
text.groupby(['Sex','Survived'])['Survived'].count().unstack().plot(kind='bar',stacked='True')
plt.title('survived_count')
plt.ylabel('count')

在这里插入图片描述

不同票价的人生存和死亡人数分布情况。(用折线图试试)(横轴是不同票价,纵轴是存活人数)

# 计算不同票价中生存与死亡人数 1表示生存,0表示死亡
fare_sur = text.groupby(['Fare'])['Survived'].value_counts().sort_values(ascending=False)
fare_sur
# 排序后绘折线图
fig = plt.figure(figsize=(20, 18))
fare_sur.plot(grid=True)
plt.legend()
plt.show()

2.7.5 任务五:不同仓位等级的人生存和死亡人员的分布情况。(用柱状图试试)

# 1表示生存,0表示死亡
pclass_sur = text.groupby(['Pclass'])['Survived'].value_counts()
pclass_sur
import seaborn as sns
sns.countplot(x="Pclass", hue="Survived", data=text)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值