自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(0)
  • 资源 (1)
  • 收藏
  • 关注

空空如也

完结Go + AI 从0到1开发 Docker 引擎

一、时代交汇处的容器革命 在云原生技术蓬勃发展的今天,容器化已经成为软件开发和部署的黄金标准。当我们提到容器技术时,Docker无疑是这一领域的代名词。然而,随着应用复杂度的增加和AI技术的渗透,传统容器引擎正面临新的挑战和机遇。站在Go语言与人工智能技术交汇的十字路口,我们不禁思考:如何从零开始构建一个融合AI能力的下一代容器引擎? Go语言自诞生之日起就与云原生技术结下了不解之缘。其简洁的语法、出色的并发模型和卓越的跨平台能力,使其成为构建基础设施软件的理想选择。与此同时,AI技术正从应用层向基础设施层渗透,为传统工具注入智能化能力。当Go语言的工程优势遇上AI的智能化潜力,一场容器引擎的革新正在悄然酝酿。

2025-12-01

[完整版10章]n8n+AI工作流:从入门到企业级AI应用实战

在传统企业的自动化实践中,我们常常看到这样的场景:IT部门花费数周时间开发一个数据同步脚本,业务人员每天手动整理不同平台的报表,客服团队重复复制粘贴相似的回复内容。这些孤立的自动化尝试如同一个个“自动化孤岛”,虽在局部提升了效率,却未能触及企业运营的深层痛点。随着AI技术从概念走向落地,一个问题愈发凸显:如何让AI不只是炫技的玩具,而成为真正融入企业血脉的生产力?答案或许就藏在n8n与AI工作流的融合中。 n8n,这个开源的自动化工具,正以其独特的节点式工作流设计和强大的集成能力,成为连接AI能力与业务场景的“超级胶水”。当传统的自动化平台还停留在“如果A则B”的规则引擎时,n8n已经进化成了企业级AI应用的孵化器——它不只是执行预定义流程的工具,更是具备一定自主决策能力的智能代理。 n8n+AI工作流的核心架构:从感知到执行的闭环 构建企业级AI工作流,首先需要理解其核心架构。n8n通过三层结构实现了从数据感知到智能决策再到自动执行的完整闭环。 在感知层,n8n的数百个节点充当了工作流的“感官神经末梢”。无论是监测邮箱中的特定邮件、抓取网页内容变化,还是监听数据库更新、接收API调用,这些节点7×24小时不间断地采集数据。与传统的RPA工具不同,n8n的触发机制更加灵活,支持基于事件、定时和条件混合的触发模式,为AI工作流提供了丰富的数据原料。

2025-11-25

完结20章AI Agent+MCP从0到1打造个人专属编程智能体课

在编程的世界里,我们是否曾幻想过拥有一个永不疲倦的编程伙伴?它能够理解我们的需求,自动完成重复性工作,甚至在复杂问题上提供创意性的解决方案?随着AI Agent与MCP(Model Context Protocol)技术的成熟,这一幻想正逐渐成为现实。从简单的代码补全到能够自主完成复杂项目的智能代理,我们站在了一个全新的编程范式变革的门槛上。 理解AI Agent与MCP:智能编程的核心引擎 AI Agent,或称人工智能代理,是一种能够感知环境、做出决策并执行行动以达成特定目标的智能系统。在编程语境下,AI Agent不再是简单的代码提示工具,而是能够理解项目上下文、分析需求并产出高质量代码的智能实体。 MCP(Model Context Protocol)作为连接AI模型与现实世界的关键桥梁,为AI Agent提供了标准化的工具调用和环境交互能力。它本质上是一套协议规范,允许AI模型安全、可控地使用外部工具和数据源,从而突破纯文本交互的局限,实现真正的“行动能力”。 传统编程助手仅能在单一文件层面提供帮助,而基于MCP的AI Agent能够理解整个代码库的结构和语义。它记得之前的对话内容,能够跨多个会话维持项目上下文,真正成为了项目的“长期合作伙伴”。

2025-11-24

完结AI智能体实战开发教程(从0到企业级项目落地)

在人工智能技术迅猛发展的今天,AI智能体已从科幻概念逐步走向现实应用,成为推动产业智能化转型的核心驱动力。从简单的规则系统到具备复杂推理能力的智能体,这一技术演进不仅改变了人机交互的方式,更重塑了企业解决问题的思路与方法。本文将深入探讨AI智能体的开发路径,从基础概念到企业级项目落地,为开发者提供一条清晰的技术成长路线。 AI智能体的技术内核与架构演进 AI智能体的本质是一个能够感知环境、进行决策并执行动作的智能系统。与传统程序不同,AI智能体具有自主性、反应性、主动性和社会能力等特征。其核心技术架构经历了从简单的基于规则的系统,到现代的基于大语言模型的智能体的演进过程。 早期的AI智能体多采用基于规则的架构,开发者需要手动编写大量if-then规则,这种方法虽然直观,但缺乏灵活性和扩展性。随着机器学习技术的发展,智能体开始具备从数据中学习的能力,但依然受限于特定领域。直到大语言模型的出现,AI智能体才真正实现了质的飞跃——能够理解自然语言、具备常识推理能力,并可在开放域环境中运作。

2025-11-22

[13章完整版]AI 编程必备 - 零基础 系统化学Python

在人工智能浪潮席卷全球的今天,AI技术正以前所未有的速度重塑着我们的生活方式和工作模式。从智能语音助手到自动驾驶汽车,从精准医疗诊断到智能金融风控,AI的应用已渗透到各行各业。而在这场技术革命中,编程作为与AI对话的核心语言,正成为一项越来越重要的基础能力。在众多编程语言中,Python以其独特的优势脱颖而出,成为AI领域当之无愧的“通用语言”。对于零基础的初学者而言,系统化学习Python不仅是进入AI世界的最佳入口,更是未来职业发展的关键基石。 一、为什么Python是AI编程的首选语言? Python在AI领域的统治地位并非偶然,而是由其内在特性与外部生态共同作用的结果。 1. 简洁易读的语法特性 Python的设计哲学强调代码的可读性与简洁性,其语法接近自然英语,使初学者能够快速上手。与C++或Java等语言相比,Python可以用更少的代码行数实现相同的功能,这让开发者能更专注于算法逻辑而非语言细节。例如,一个简单的“Hello World”程序,在Java中需要5行代码,而在Python中仅需1行。这种低门槛特性使得零基础学习者能够在短期内获得成就感,保持学习动力。

2025-11-20

徐老师2025新版uniapp课程项目实战带支付教程

在移动互联网时代,跨端开发框架的出现极大地提升了开发效率。uniapp作为其中的佼佼者,凭借其"一次开发,多端发布"的特性,赢得了广大开发者的青睐。今天,我将通过一个实战项目,展示如何使用uniapp构建一个带有支付功能的完整应用。 uniapp:跨端开发的利器 uniapp是基于Vue.js的跨端开发框架,开发者编写一套代码,可以发布到iOS、Android、Web以及各种小程序平台。这种特性不仅大幅降低了开发成本,还确保了多端体验的一致性。 与原生开发相比,uniapp具有明显的优势:开发周期短、技术门槛低、维护成本低。对于中小型团队和个人开发者而言,这些优势尤为明显。 项目概述:电商应用实战 我们以一个简易电商应用为例,重点实现商品展示、购物车管理和支付功能。这个应用虽然简单,但涵盖了移动电商的核心流程。

2025-10-24

和橘子学AI创作【500集120实战】教程

在数字艺术的疆域里,一场静默的革命正在进行。曾经,创作是手与工具的直接对话——画笔在画布上的摩擦,鼠标在数位板上的滑动。而今天,一种新的创作语言正在形成:提示词(Prompt)成为了新的画笔,神经网络是看不见的画布,AI模型则是那位技艺超群却又需要引导的合作者。从Stable Diffusion WebUI的直观操作,到ComfyUI的节点式编程;从AI生成图像的惊艳,到AI视频的动态魔力;再到Photoshop这一传统强者的AI化转型——我们正站在一个前所未有的交叉点上。这不是关于机器取代人类的悲观叙事,而是关于人类如何将机器纳入创作流程的积极探索。 ComfyUI与SD WebUI:两种哲学,同一追求 在AI绘画的实践领域,Stable Diffusion的两个主要界面代表了两种截然不同的创作哲学。SD WebUI以其直观的图形界面降低了AI创作的门槛,让任何有兴趣的人都能通过简单的文本输入探索生成式AI的潜力。它像是给创作者的一辆自动挡汽车——你不需要理解离合器的工作原理,只需踩下油门(输入提示词)就能抵达想象的某个角落。 而ComfyUI则完全不同。它采用节点式的工作流界面,初看令人望而生畏——错综复杂的连线,各式各样的处理模块,仿佛一张复杂的电路图。但正是这种看似复杂的设计,揭示了AI创作的本质:一个由多个专门化模块组成的、可定制和可理解的数据流管道。在ComfyUI中,创作者不再是一个单纯的下令者,而是成为了流程的架构师,能够精确控制从文本编码、潜在空间采样到图像解码的每一个环节。

2025-10-22

徐老师2025新版Nodejs课程含项目实战课程

在当今快速发展的互联网时代,Node.js 作为一门高效、轻量的后端技术,已经成为全栈开发者的必备技能之一。随着技术的迭代,新版 Node.js 课程不仅优化了核心特性,还融入了丰富的项目实战,帮助学习者从理论到实践无缝衔接。本文将探讨新版 Node.js 课程的核心内容、实战价值以及学习路径,为开发者提供一条清晰的全栈成长之路。 Node.js 的核心优势与新版特性 Node.js 基于 Chrome V8 引擎构建,采用事件驱动和非阻塞 I/O 模型,使其在处理高并发请求时表现出色。与传统后端语言如 Java 或 PHP 相比,Node.js 轻量、灵活,尤其适合实时应用、API 服务和微服务架构。近年来,Node.js 的更新进一步强化了其性能与安全性。例如,新版本对 ES6+ 语法的支持更加完善,引入了异步编程的现代化解决方案(如 async/await),并优化了模块系统,让开发者能够更高效地编写可维护的代码。 此外,Node.js 的生态系统通过 npm(Node Package Manager)不断扩展,涵盖了从 Web 框架到工具链的无数库。新版课程通常会重点介绍这些工具的使用,例如 Express.js 用于构建 Web 服务器,Socket.IO 实现实时通信,以及 TypeScript 的集成以提升代码可靠性。这些特性使得 Node.js 不仅适用于后端开发,还能通过 React 或 Vue 等前端框架实现全栈整合。

2025-10-21

基于Golang+Gin+Gorm+Vue3母婴商城项目实战教程

在当今数字化时代,电商平台已成为人们购物的主要渠道之一。母婴用品作为电商领域的重要品类,对平台的安全性、稳定性和用户体验提出了更高要求。本文将深入探讨如何利用Golang、Gin、Gorm和Vue3等技术栈,构建一个功能完善、性能优异的母婴商城系统。 项目架构设计 一个完整的母婴商城系统需要从前端用户界面到后端数据处理的全方位考量。我们采用前后端分离的架构模式,后端使用Golang及其生态组件构建RESTful API,前端使用Vue3构建响应式单页面应用。 后端架构基于Golang的Gin框架,这是一个高性能的HTTP Web框架,具有快速路由和中间件支持的特点。数据持久层使用Gorm,这是一个功能丰富的ORM库,能够简化数据库操作。前端选择Vue3及其组合式API,配合Pinia状态管理和Vite构建工具,打造现代化用户界面。 数据库设计方面,我们采用关系型数据库MySQL,设计了用户、商品、订单、购物车等核心数据表。考虑到母婴商品的特殊性,我们特别注重商品分类的细致性和属性的完整性,以满足用户精准查找的需求。 后端核心模块实现 用户模块是系统的基石。我们设计了完整的注册、登录、权限验证流程。使用JWT(JSON Web Token)实现无状态认证,通过Gin的中间件机制对需要保护的路由进行拦截验证。密码采用bcrypt加密存储,确保用户数据安全。

2025-10-15

从0到1,LangChain+RAG全链路实战AI知识库教程

在信息爆炸的时代,企业和个人都面临着同样的困境:我们积累了海量的文档、报告、数据,却无法高效地从中获取所需知识。传统的搜索引擎基于关键词匹配,缺乏真正的理解;而通用大语言模型虽能对话,却对内部私有知识一无所知。正是这种痛点,催生了检索增强生成(RAG)技术的崛起,它正在彻底改变我们与知识交互的方式。 本文将带你从零开始,深入LangChain与RAG技术的全链路实战,手把手教你构建一个真正智能的AI知识库系统。 RAG:知识库智能化的技术革命 检索增强生成(Retrieval-Augmented Generation)的核心思想很简单却极具威力:将信息检索与生成模型相结合。当用户提出问题时,系统首先从知识库中检索相关文档片段,然后将这些片段与问题一起喂给大语言模型,生成精准、有据可循的答案。 这种架构解决了大语言模型的几大瓶颈:知识滞后、幻觉问题以及对私有知识的无知。通过RAG,我们可以让通用的LLM瞬间变成你专属的领域专家,无论是回答公司内部政策,还是解析技术文档,都能做到有据可依、应答如流。

2025-10-11

AI大模型项目三连炸:多模态监控平台+RAG推荐系统+智能体智驾系统课程

一夜之间,AI大模型领域硝烟再起。不再是单一产品的迭代,而是三大重磅项目的同时引爆——多模态监控平台以“上帝之眼”重新定义安防边界,RAG推荐系统以“读心术士”的姿态重塑信息分发逻辑,智能体智驾系统则以“道路哲学家”的深度思考挑战传统自动驾驶范式。这绝非偶然的技术进步,而是一场关于AI如何接管物理世界与数字世界的权力宣言。 当行业还在为GPT-4o的实时语音交互惊叹时,更深层次的革命已在三个看似分立实则联动的战场全面展开。这不是渐进式创新,而是对现有技术架构的降维打击,是AI大模型从“对话玩具”向“世界基建”的关键一跃。 多模态监控平台:从“看见”到“洞见”的认知跃迁 传统监控系统在AI时代几乎形同虚设。数以亿计的摄像头每日产生海量数据,却依赖有限人力进行反应式处理。多模态监控平台的突破在于,它让监控系统首次获得了人类般的场景理解能力。

2025-10-09

2025更新小白玩转AI大模型应用开发

清晨的第一缕阳光透过窗帘,你打开手机,语音助手为你播报今日日程;午休时,智能写作工具帮你润色工作报告;深夜,推荐算法为你找到心仪的电影。不知不觉间,人工智能大模型已渗透生活的每个角落。或许你以为,驾驭这些“数字巨兽”是科技巨头的专利,是博士们的游戏。但今天,我要告诉你一个秘密:AI应用开发的大门,早已向每个怀揣好奇的普通人敞开。 破除迷思:你不是在造火箭,而是在搭积木 许多人对AI开发望而却步,脑海中浮现出复杂的数学公式和天书般的代码。但真相是:2023年的AI应用开发更像“乐高积木”游戏。你不需要从零训练耗资数百万美元的模型,而是基于现有大模型(如GPT、文心一言、通义千问等)进行应用层开发。这就像你不必为了写电子邮件而先发明计算机一样。 当前AI生态系统的成熟度令人惊叹。OpenAI的GPT系列、Anthropic的Claude、谷歌的PaLM等大模型已经具备了惊人的通用能力,而我们要做的,只是学会如何与它们“对话”,让它们为我们解决特定问题。这就是提示工程(Prompt Engineering)成为核心技能的原因——好的问题引导AI产出好的答案。

2025-09-18

完结10章Java大模型工程能力必修课,LangChain4j 入门到实践

在人工智能技术飞速发展的今天,大型语言模型(LLM)已成为推动创新的核心驱动力。对于Java开发者而言,掌握大模型工程能力不再是一种选择,而是一种必需。LangChain4j作为专为Java开发者设计的工具库,正在成为连接传统Java工程与大模型应用的重要桥梁。 为什么Java开发者需要关注大模型工程能力? Java作为企业级应用开发的主流语言,在金融、电商、物联网等领域有着深厚的积累。随着AI技术的普及,这些传统领域也面临着智能化转型的迫切需求。Java开发者需要一种既能充分利用现有Java生态系统,又能快速集成大模型能力的解决方案。 LangChain4j应运而生,它为Java开发者提供了构建大模型应用的标准化工具和模式,让开发者能够专注于业务逻辑而非底层技术实现。与Python版本的LangChain类似,LangChain4j提供了组件化和链式调用的方式,大大简化了大模型应用的开发流程。

2025-09-12

AI智能体(Agent)开发实战:工业级项目案例驱动课

AI智能体开发实战:工业级项目案例驱动的核心能力构建 引言:AI智能体的时代已至 我们正站在人工智能发展的关键节点。从ChatGPT的现象级爆发到Sora模型展现的惊人潜力,生成式AI技术已深刻改变了人机交互的范式。然而,这些面向大众的通用模型仅仅揭开了AI潜力的冰山一角。真正的产业变革力量,来自于能够深入特定场景、解决实际问题的AI智能体(Agent)。 与单一功能的传统AI模型不同,AI智能体具备感知、决策、执行和学习的完整能力闭环。它不仅是“大脑”,更是拥有“手脚”的完整智能实体。从智能制造中的质量检测员,到金融领域的自动风控分析师,再到医疗健康中的个性化诊断助手,AI智能体正在各个行业重新定义生产力标准。 本文将通过工业级项目案例,深入探讨AI智能体开发的全流程,揭示从概念到落地实战中的关键技术挑战与解决方案。 一、AI智能体的核心架构与能力层次 一个工业级AI智能体通常包含四个核心层级: 感知层:负责多模态数据输入和处理,包括计算机视觉、语音识别、传感器数据解析等。在某工业质检案例中,我们融合了高分辨率摄像头、红外传感器和振动数据,构建了产品缺陷的多维度感知系统。

2025-09-10

完结16章COZE AI 智能体开发体系课(从入门到高级)零基础零代码

内容概要:本文全面介绍了《COZE AI 智能体开发体系课(从入门到高级)零基础零代码》课程的核心理念与技术价值。课程通过COZE平台实现零代码开发AI智能体,打破传统AI开发对编程能力的高门槛限制,采用可视化界面和模块化设计,让非技术背景用户也能轻松构建具备感知、决策与执行能力的AI智能体。课程内容涵盖智能体基本概念、拖拽式开发实践、项目驱动学习、多智能体协作等,强调“学-做-用”结合,帮助学员掌握AI应用构建能力。同时,文章指出该课程推动了AI技术的平民化、创意民主化和数字素养普及,促进跨领域人才参与AI创新,形成技术与专业领域深度融合的新生态。; 适合人群:零基础或非技术背景但希望进入AI领域的学习者,如教育、医疗、营销等行业从业者,以及希望提升AI应用能力的职场人士;也适合希望了解零代码AI发展趋势的开发者或管理者。; 使用场景及目标:①帮助非技术人员快速构建个性化AI助手,如客服智能体、学习辅导助手、健康管理工具等;②提升跨行业工作者的AI应用能力,推动AI在实际业务场景中的落地;③培养面向未来的“AI+领域”复合型人才,增强职场竞争力;④理解智能体协作、系统设计等高级概念,为参与复杂AI系统开发奠定基础。; 阅读建议:此资源虽无需编程基础,但建议学习者结合课程中的实践案例动手操作,深入理解智能体的工作机制与设计逻辑。建议边学边练,完成项目实践以积累可展示的经验,最大化学习成效。

2025-09-08

完结AI 全栈开发实战营

AI全栈开发实战营:从数据到智能应用的完整旅程 在人工智能浪潮席卷全球的今天,AI全栈开发能力已成为技术人才的新标杆。"AI全栈开发实战营"应运而生,为开发者提供了一条从基础理论到产业实践的完整成长路径。这不仅是一场技术培训,更是一次思维模式的革新,让开发者能够独立完成从数据准备到模型部署的全流程工作。 全栈思维:打破AI开发的壁垒 传统AI开发往往存在严重的分工隔阂:数据工程师负责数据处理,算法工程师专注模型构建,软件开发者负责系统集成。这种分工模式导致沟通成本高昂、迭代周期漫长,最终影响了AI项目的落地效果。

2025-09-05

使用vue3封装前端通用开发框架、开放平台实战、支付系统实战

在当今快速发展的互联网时代,前端开发面临着越来越多的挑战和机遇。随着业务复杂度的提升和项目规模的扩大,如何构建可维护、可扩展且高效的前端架构成为了每个开发团队必须思考的问题。本文将围绕Vue3框架,探讨如何封装一个前端通用开发框架,并结合开放平台和支付系统的实战案例,分享一些实践经验和思考。 一、Vue3框架特性与优势 Vue3作为当前最流行的前端框架之一,其带来的诸多创新特性为前端开发注入了新的活力。Composition API的引入使得代码组织更加灵活,逻辑复用更加便捷;基于Proxy的响应式系统提供了更好的性能表现;Teleport、Suspense等新功能解决了特定场景下的开发痛点。 这些特性使得Vue3非常适合用于构建大型企业级应用。在我们封装通用前端框架时,充分利用Vue3的这些优势,可以创造出既保持灵活性又不失稳定性的开发基础。

2025-09-02

flutter中级班Get和Dio框架仿网易云播放器

Flutter中级进阶:用Get与Dio打造网易云风格音乐播放器 在移动应用开发领域,Flutter凭借其跨平台高效开发和流畅的UI体验,已成为众多开发者的首选。而对于中级开发者而言,掌握状态管理和网络请求两大核心技能,是迈向高级开发的关键一步。本文将以仿网易云音乐播放器为例,深入探讨如何利用Get框架实现优雅的状态管理,以及通过Dio处理复杂网络请求,最终打造一个功能完整、体验流畅的音乐播放应用。 一、Flutter中级开发的核心挑战 当我们从初级迈向中级开发时,往往会面临几个典型问题:如何管理跨页面的状态?如何处理复杂的网络请求与缓存?如何实现平滑的页面切换和动画效果?这些问题的解决直接关系到应用的质量和用户体验。 网易云音乐播放器作为一个功能丰富的应用,完美涵盖了这些挑战:它需要管理播放状态、歌单列表、用户数据等多个状态;需要从网络获取大量音频资源和元数据;还需要实现精美的界面转场和交互效果。正是这些复杂性,使其成为练习中级技能的理想项目。

2025-08-22

完结22章LLM应用全流程开发 全新技术+多案例实战+私有化部署

摘要 本文全面探讨了大型语言模型(LLM)应用全流程开发的关键环节,包括前沿技术解析、多场景案例实战和私有化部署策略。文章首先介绍了LLM技术的最新进展,然后通过金融、医疗和教育三个行业的典型案例展示应用实践,最后详细阐述了私有化部署的技术路线和优化策略。研究结果表明,通过全流程的系统化开发方法,企业能够有效利用LLM技术创造业务价值,同时保障数据安全和合规性。 引言 大型语言模型(LLM)技术的快速发展正在深刻改变各行业的智能化进程。从GPT系列到最新的开源模型如LLaMA,LLM展现出了强大的语言理解、生成和推理能力。然而,如何将这些前沿技术转化为实际业务价值,仍然面临诸多挑战。本文旨在提供一个系统化的LLM应用开发框架,涵盖从技术选型到部署落地的全流程。 当前LLM应用开发面临三个主要痛点:技术更新快导致的学习成本高、场景适配性差导致的落地困难,以及数据敏感导致的部署难题。针对这些问题,我们提出"全新技术掌握+多案例实战+私有化部署"的三位一体解决方案,帮助企业高效、安全地实现LLM技术落地

2025-08-12

完结33章重构计算机专业课,带你手写四大核心模块,硬核筑基

摘要 本文全面探讨了计算机专业核心技能体系,重点分析了操作系统原理、Linux程序设计、计算机网络和数据库系统等关键技术领域的内在联系与综合应用。文章首先阐述了操作系统作为计算机系统核心的基础作用,然后深入剖析了Linux程序设计的特点与实践方法,接着系统讲解了计算机网络的分层结构与通信原理,最后详细介绍了数据库系统的设计与管理。研究表明,这些核心技术领域相互支撑、紧密关联,共同构成了计算机专业人才的核心竞争力。掌握这些技术的综合应用能力,对于解决复杂计算问题和开发高效信息系统至关重要。 引言 在信息技术飞速发展的时代,计算机专业人才需要掌握一系列相互关联的核心技术才能应对日益复杂的系统开发需求。操作系统作为计算机系统的核心,管理和协调硬件资源;Linux程序设计提供了在开源环境下开发高效软件的实践平台;计算机网络实现了分布式系统的通信基础;而数据库系统则为数据存储和管理提供了系统化解决方案。这些技术领域并非孤立存在,而是相互渗透、相互支撑,共同构成了现代计算机系统的技术基石。本文旨在系统地探讨这些核心技术的理论基础、实践方法以及它们之间的内在联系,为计算机专业学生和技术人员提供一个全面而深入的学习框架。

2025-08-05

完结10章零代码玩转AI视频制作-10小时速成爆款全攻略

摘要 本文探讨了零代码AI视频制作工具如何降低视频创作门槛,使非技术用户也能轻松实现专业级视频制作。文章分析了AI视频制作的核心技术,介绍了主流零代码平台的功能特点,并通过案例展示了其在不同场景中的应用价值。研究结果表明,这些工具显著提高了创作效率,但同时也面临内容原创性和伦理挑战。未来,随着技术进步,零代码AI视频制作将更加智能化和个性化。 引言 在数字内容爆炸式增长的时代,视频已成为最受欢迎的信息传播媒介。然而,传统视频制作需要专业的拍摄设备、复杂的剪辑软件和长期的技术积累,这对大多数非专业人士构成了难以逾越的门槛。近年来,人工智能技术的突破性发展为视频创作带来了革命性变化,特别是零代码AI视频制作工具的出现,彻底改变了这一局面。这些工具通过直观的图形界面和智能算法,使用户无需编写任何代码就能完成从脚本生成到最终渲染的全流程视频制作。本文旨在全面探讨零代码AI视频制作的技术原理、应用场景和发展趋势,为内容创作者提供实用的参考指南。 一、AI视频制作的核心技术解析 零代码AI视频制作平台背后融合了多项前沿人工智能技术,这些技术的协同工作实现了视频创作的自动化和智能化。计算机视觉技术使系统能够理解和分析图像视频内容,包括对象识别、场景理解和运动追踪等功能。自然语言处理(NLP)技术则负责处理文本输入,能够将用户简单的文字描述转化为详细的视频脚本,甚至生成富有表现力的配音。生成对抗网络(GANs)和扩散模型等生成式AI技术可以创造高质量的图像、动画和特效,大大丰富了视频的视觉元素。

2025-08-04

[最新版6章]AI大模型RAG项目实战课

引言:RAG技术的兴起与价值 在人工智能领域,检索增强生成(Retrieval-Augmented Generation,简称RAG)已成为近年来最受关注的技术范式之一。随着大型语言模型(LLM)能力的不断提升,如何让这些模型突破自身训练数据的限制,获取并利用最新、最相关的信息,成为工业界和学术界共同关注的焦点。RAG技术通过将信息检索与文本生成相结合,有效解决了传统大模型存在的"知识固化"问题,使其能够动态接入外部知识源,显著提升了生成内容的准确性、时效性和可靠性。 RAG技术的核心价值在于它巧妙地将两种AI优势能力结合起来:信息检索系统的高效精准信息获取能力,以及大语言模型的强大语言理解和生成能力。这种结合不是简单的功能叠加,而是通过精心设计的架构实现1+1>2的效果。在金融、医疗、法律等对信息准确性要求极高的领域,RAG技术正展现出巨大的应用潜力。 一、RAG技术架构解析 1.1 核心组件与工作流程 一个典型的RAG系统由三个核心组件构成:检索器(Retriever)、生成器(Generator)和知识库(Knowledge Base)。其工作流程可以概括为:用户输入查询→检索器从知识库中查找相关文档→将检索结果与原始查询一起输入生成器→生成器输出最终回答。 与传统端到端生成模型不同,RAG系统中的生成器不仅基于其预训练的参数知识,还能够参考检索到的实时相关信息。这种架构既保留了大型语言模型的通用语言能力,又通过外部知识注入弥补了其可能的知识盲区或时效局限。

2025-08-02

[完结9章附电子书]AI Agent 开发新范式 MCP 从入门到多场景全链路实战

引言:AI Agent的演进与MCP范式的崛起 近年来,随着大语言模型(LLM)的爆发式发展,AI Agent(人工智能代理)逐渐成为AI落地的重要载体。传统的AI开发模式往往依赖定制化模型训练和复杂规则编排,而新一代的AI Agent开发范式——MCP(Memory, Control, Planning),正在重塑智能体的构建方式。 MCP范式通过模块化设计,将AI Agent的核心能力拆解为记忆(Memory)、控制(Control)和规划(Planning)三大核心组件,使开发者能够更高效地构建适应多场景的智能代理。本文将系统介绍MCP范式的核心概念,并通过实战案例展示如何从零构建一个全链路的AI Agent。 一、MCP范式的核心组件解析 1. Memory(记忆):让AI Agent具备持续学习能力 记忆模块是AI Agent的“大脑”,负责存储和检索历史交互信息,使其能够基于上下文做出更合理的决策。记忆系统通常包括: 短期记忆(Short-term Memory):存储当前会话的上下文,如聊天记录、临时数据。 长期记忆(Long-term Memory):通过向量数据库(如FAISS、Milvus)存储结构化知识,支持语义检索。 外部记忆(External Memory):集成知识图谱、数据库或API,增强Agent的信息获取能力。

2025-08-01

2025徐老师React18&19课程含项目实战

React作为当今最流行的前端框架之一,其18和19版本带来了许多令人振奋的新特性。本文将深入探讨React最新版本的核心技术,并通过实战角度分析如何构建现代化前端应用,同时尽量减少代码示例,专注于概念理解和架构设计。 React 18 革命性更新解析 React 18的发布标志着React进入并发渲染时代,这一版本的核心在于并发特性(Concurrent Features)的引入,它彻底改变了React应用的渲染方式。 并发渲染的本质 并发渲染不是指多线程编程,而是React内部调度机制的革新。它使React能够准备多个版本的UI,并在适当的时候显示它们。这种机制带来了两大核心优势: 可中断渲染:React现在可以在渲染过程中响应更高优先级的用户交互 渐进式更新:大型更新可以被拆分为小块,避免界面卡顿 自动批处理(Automatic Batching)

2025-07-31

LLM应用全流程开发 全新技术+多案例实战+私有化部署

引言:LLM技术浪潮与企业应用新机遇 大型语言模型(LLM)技术的迅猛发展正在重塑全球科技产业格局。从ChatGPT的横空出世到Claude、Gemini等模型的相继推出,LLM已展现出在文本生成、代码编写、知识问答等领域的惊人能力。据最新统计,全球已有超过60%的企业正在探索或已经部署LLM相关应用,这一技术正在从单纯的"炫技"阶段快速转向实际生产力工具。 然而,对于大多数企业而言,如何将LLM技术真正落地到业务场景中仍面临诸多挑战。从模型选择、数据准备到应用开发和部署运维,LLM应用的全流程开发涉及众多技术环节,需要系统性的方法论指导。本文将深入剖析LLM应用开发的全流程,结合前沿技术和实战案例,为企业提供从理论到实践的完整指南。 一、LLM应用开发全流程解析 LLM应用开发是一个系统工程,需要遵循科学的方法论流程。完整的开发周期通常包含需求分析与场景定义、数据准备与处理、模型选择与调优、应用开发与集成、测试评估与部署运维五个关键阶段。

2025-07-16

MCP+DeepSeek打造AI Agent智能体

引言 近年来,人工智能(AI)技术飞速发展,特别是大语言模型(LLM)和智能体(Agent)技术的结合,正在推动AI从被动响应向主动决策演进。在这一趋势下,MCP(Multi-agent Collaborative Planning,多智能体协同规划)与DeepSeek(深度求索大模型)的结合,为构建高效、自主、可扩展的AI Agent智能体提供了全新的技术路径。 本文将探讨MCP和DeepSeek如何协同工作,打造更强大的AI Agent,并分析其在行业应用中的潜力。 1. AI Agent智能体的核心挑战 AI Agent是一种能够感知环境、自主决策并执行任务的智能系统。当前,AI Agent的发展面临几个关键挑战: 复杂任务分解:许多现实任务涉及多个子任务,单一Agent难以高效完成。 动态环境适应:真实世界环境变化多端,Agent需要实时调整策略。 知识泛化与推理:Agent需结合领域知识和常识推理,才能做出合理决策。 多模态交互:Agent需处理文本、语音、图像等多种输入输出形式。 传统的单Agent架构难以应对这些挑战,而MCP+DeepSeek的组合提供了更优的解决方案。

2025-07-15

[15章附电子书]GO + AI 零基础实战智能运维平台

引言:当GO语言遇见AI运维 在数字化转型浪潮席卷全球的今天,运维领域正经历着一场深刻的变革。传统的人工运维方式已难以应对日益复杂的IT环境和海量的监控数据,而人工智能技术的引入为运维工作带来了全新的可能性。在这场变革中,GO语言凭借其简洁高效、并发性能优越的特点,成为构建智能运维平台的理想选择。本文将带领零基础的读者探索如何利用GO语言和AI技术构建智能运维平台,无需深厚的编程基础,只需跟随我们的步伐,就能踏上智能运维的实践之路。 一、智能运维平台的核心价值 1.1 传统运维的痛点与挑战 传统运维工作面临着诸多挑战:人工监控效率低下、故障响应滞后、问题排查耗时、经验难以传承等。运维人员常常陷入"救火队员"的角色,疲于应对各种突发状况,缺乏对系统健康状态的全局把握和前瞻性预测。

2025-07-12

AI大模型算法-从大模型原理剖析到训练(微调)落地实战

1. 引言 近年来,人工智能(AI)领域取得了突破性进展,尤其是以GPT、BERT、PaLM等为代表的大规模预训练模型(Large Language Models, LLMs)在自然语言处理(NLP)、计算机视觉(CV)和多模态任务中展现出惊人的能力。这些大模型不仅能够理解和生成高质量的自然语言文本,还能适应多种下游任务,极大地推动了AI技术的落地应用。 然而,大模型的训练和微调涉及复杂的算法、庞大的计算资源和精细的优化策略。本文将从大模型的基本原理出发,深入剖析其核心算法,并探讨如何在实际业务中进行训练和微调,最终实现AI大模型的落地应用。 2. 大模型的核心原理 2.1 预训练与微调范式 大模型的核心思想是“预训练+微调”(Pre-training + Fine-tuning)。预训练阶段,模型通过海量无监督或自监督数据学习通用的语言或视觉表示;微调阶段,模型在特定任务的小规模标注数据上进行优化,使其适应具体应用场景。 预训练(Pre-training): 大模型通常采用Transformer架构,通过自回归(如GPT)或自编码(如BERT)方式在大规模语料上进行训练。例如: GPT系列(Generative Pre-trained Transformer)采用自回归(Auto-Regressive)方式,逐词预测下一个token。 BERT(Bidirectional Encoder Representations from Transformers)采用掩码语言建模(MLM),通过上下文预测被遮蔽的单词。

2025-07-07

19章AI Agent+MCP从0到1打造商业级编程智能体

引言 在人工智能技术飞速发展的今天,AI Agent(人工智能代理)已成为企业智能化转型的核心驱动力之一。特别是在编程领域,AI Agent能够辅助开发者完成代码生成、调试、优化等任务,大幅提升开发效率。而MCP(Modular Cognitive Processing,模块化认知处理)作为一种新兴的AI架构,为构建高性能、可扩展的编程智能体提供了强大的方法论支持。 本文将探讨如何从0到1构建一个商业级编程智能体,结合AI Agent与MCP技术,实现智能化代码生成、自动化测试、智能优化等功能,并分析其商业价值与应用前景。 1. AI Agent与MCP概述 1.1 AI Agent的定义与特点 AI Agent是一种能够感知环境、自主决策并执行任务的智能程序。在编程领域,AI Agent可以: 代码生成:根据自然语言描述自动生成代码片段。 代码补全:预测开发者意图,提供智能补全建议。 错误检测与修复:分析代码逻辑,识别潜在Bug并提供修复方案。 自动化测试:生成测试用例,提高代码覆盖率。

2025-07-04

完结12章AI辅助神器Cursor -从0到1实战《仿小红书小程序》

在当今移动互联网高速发展的时代,社交电商已成为连接用户与商品的重要桥梁。小红书作为国内领先的社交电商平台,其独特的UGC内容生态和精准的推荐算法吸引了大量年轻用户。本文将探讨如何利用Cursor这一强大的AI编程助手,快速开发一款仿小红书风格的小程序,从技术选型到核心功能实现,为开发者提供一套高效、可复制的开发方案。 一、Cursor工具简介与项目初始化 Cursor是一款革命性的AI编程助手,它通过深度集成GPT等大型语言模型,为开发者提供了前所未有的编码体验。与传统IDE不同,Cursor能够理解自然语言指令,自动生成高质量代码,极大提升了开发效率。在开发仿小红书小程序时,Cursor的这些特性将发挥关键作用。 首先,我们需要搭建开发环境。使用微信开发者工具创建小程序项目后,可以通过Cursor快速初始化项目结构。在Cursor中,只需输入"创建基于uniapp的仿小红书小程序项目",它就会自动生成标准的目录结构,包括pages、components、static等文件夹。这一过程通常只需几秒钟,而手动创建可能需要数分钟。 项目配置方面,Cursor能智能生成必要的配置文件。例如,在app.json中自动添加页面路径、窗口样式和tabBar配置;在project.config.json中设置项目名称、appid等基本信息。通过自然语言指令如"配置支持暗黑模式",Cursor会自动添加相应的样式配置代码,避免了手动查找文档的繁琐过程。 在依赖管理上,Cursor同样表现出色。当我们需要添加uview-ui等UI库时,只需告诉Cursor"添加uview-ui到项目依赖",它就会自动执行npm安装命令,并在项目中正确引入组件。这种智能化的依赖管理大大减少了因版本冲突或配置错误导致的问题。

2025-07-03

19章全LLM开发工程师入行实战-从0到1开发轻量化私有大模型

本文将为你揭示从零开始成为LLM开发工程师的实战路径,重点介绍如何从理论到实践,一步步构建属于自己的轻量化私有大模型。 第一章:LLM开发工程师的核心能力地图 1.1 基础知识储备 成为一名合格的LLM开发工程师,需要建立四大知识支柱: 数学基础:线性代数、概率论、微积分是理解神经网络工作原理的基石。不必成为数学专家,但需理解矩阵运算、梯度下降、概率分布等核心概念。 编程能力:Python是LLM开发的首选语言,需熟练掌握PyTorch或TensorFlow深度学习框架。此外,还需要了解并行计算、GPU编程基础以及容器化技术。 机器学习理论:从传统机器学习算法到深度学习架构,特别是对Transformer机制的深入理解,这是所有现代大模型的核心。 领域专业知识:根据应用场景的不同,可能需要自然语言处理、计算机视觉或多模态领域的专业知识。

2026-01-22

完结多模态与视觉大模型开发实战 - 2026必会

引言:当AI开始“看见”并“理解”世界 2026年的技术世界,单一模态的AI模型如同只能听到声音却看不见画面的收音机,已经无法满足复杂场景的需求。多模态与视觉大模型正以前所未有的速度,重塑着从医疗诊断到自动驾驶,从智能创作到工业质检的每一个领域。据统计,到2026年,全球多模态AI市场规模预计将突破500亿美元,成为继大语言模型后最具颠覆性的技术浪潮。掌握多模态与视觉大模型开发能力,已经成为技术从业者不可回避的“必会”技能。 一、多模态融合:超越单一感官的智能革命 1.1 从单一到融合的技术演进 多模态AI的核心突破在于其整合处理文本、图像、音频、视频等多种信息的能力。传统的视觉模型如CNN(卷积神经网络)虽然擅长图像识别,却无法理解图像中的语义内容;语言模型如Transformer虽能处理文本,却对视觉信息“视而不见”。多模态模型通过统一的架构,实现了跨模态的理解与生成。

2026-01-19

[14章附电子书]React 19 高薪技术 从入门到进阶

在当今快速发展的前端开发领域,掌握最新技术是获得高薪职位的关键。React 19作为React生态的最新里程碑,不仅带来了革命性的性能优化和开发体验提升,更为开发者开辟了从入门到进阶的职业发展路径。本文将深入探讨React 19的核心特性,并规划一条通往高薪的技术成长之路。 React 19:技术革新的核心亮点 1. 服务器组件的全面推广 React 19最大的突破是服务器组件的正式落地。与传统的客户端渲染不同,服务器组件在服务端执行,仅将必要的JavaScript发送到客户端,大幅减少了包体积和初始加载时间。

2026-01-16

10章全Agent 智能体实战课- 0基础搭建自动化副业提效系统

从零搭建智能体系统:普通人也能掌握的自动化副业提效术 在数字化浪潮席卷各行各业的今天,一个令人振奋的机遇正悄然浮现:智能体(Agent)技术正从实验室走向大众应用,成为个人能力提升和副业发展的新引擎。想象一下,一个能够自动处理重复性工作、帮你分析市场趋势、甚至协助内容创作的“数字助手”,正等待着被你创造和驾驭。这不是科幻电影的情节,而是现在就可以实现的现实。 智能体:不只是另一个科技热词 智能体本质上是一套能够感知环境、自主决策并执行任务的程序系统。与传统的自动化工具不同,智能体具备学习能力和适应性,能够处理更加复杂和多变的任务场景。对于副业创业者而言,这意味着你可以搭建一个“数字分身”,让它帮你处理那些耗时却又必要的重复性工作,而你则可以专注于更有创造性和战略性的部分。 许多人认为构建这样的系统需要高深的编程知识和计算机科学背景,但实际情况已经发生根本性改变。随着低代码平台、API经济和大语言模型的发展,零基础搭建自动化系统已经变得触手可及。 第一阶段:心智准备——重新定义副业工作流 在动手搭建之前,我们需要进行一次彻底的心智重塑。传统副业模式往往意味着用自己的时间直接换取报酬,这种模式有着明显的天花板——每个人的时间都是有限的。而智能体辅助的副业模式则转向“构建系统-系统工作-获取回报”的良性循环。

2026-01-09

9章全AI训练师 零基础入门与实战

从零到一:AI训练师的实战进阶之路 在人工智能技术席卷全球的今天,一个新兴职业正在悄然崛起——AI训练师。这个看似神秘的职业,实际上已成为连接人工智能技术与实际应用场景的关键桥梁。据统计,2023年中国AI训练师相关岗位需求同比增长了47%,而全球范围内,企业对于能够“教”AI如何工作的人才需求缺口已达数百万。那么,零基础的普通人能否踏入这个充满机遇的领域?答案是肯定的。 AI训练师:不只是“数据标注员” 许多人初次接触“AI训练师”这个概念,往往会将其简单等同于“数据标注员”。事实上,这是一种普遍的误解。数据标注确实是AI训练的基础工作之一,但真正的AI训练师的工作范畴远不止于此。 AI训练师的核心使命是“教会AI理解人类世界”。他们通过设计训练方案、准备和优化数据、调整模型参数、评估模型表现等一系列专业操作,使人工智能系统能够更准确地理解、回应和解决实际问题。从智能客服对话系统、医疗影像识别,到自动驾驶决策模型、金融风控系统,每一个成功落地应用的AI背后,都有一支专业的AI训练师团队。

2026-01-05

完结大模型就业课-PyTorch+深度学习

大模型热潮与就业市场重塑 2022年底,ChatGPT的横空出世不仅引爆了全球AI技术革命,更深刻重塑了中国就业市场格局。据统计,仅2023年上半年,国内新增人工智能相关岗位超过50万个,其中超过60%与大模型技术直接相关。猎聘网数据显示,“大模型工程师”平均月薪达到4.8万元,远超传统软件开发岗位。这场由大模型驱动的技术变革,正以前所未有的速度重新定义着“高薪职业”的内涵。 在这一浪潮中,一个令人瞩目的现象是:PyTorch作为深度学习框架,已成为大模型领域事实上的标准工具。根据GitHub 2023年度报告,PyTorch在机器学习项目中的使用率高达68%,远超其他框架。这一技术选择不仅反映了产业趋势,更隐含着一个清晰的职业信号:掌握PyTorch与深度学习,已成为进入大模型行业的重要通行证。

2026-01-04

完结LangChain+MCP打造AIAgent智能体

在人工智能技术日新月异的今天,AI智能体已经从概念验证走向实际应用,成为数字化转型的核心驱动力。当LangChain与模型上下文协议(Model Context Protocol,MCP)这两个看似独立的技术栈相遇,一场关于AI智能体架构设计的革命正在悄然发生。这种融合不仅重新定义了智能体的能力边界,更为企业级AI应用开辟了前所未有的可能性。 技术融合的背景与意义 LangChain作为当前最流行的AI应用开发框架之一,以其模块化设计和丰富的工具集成能力,大大降低了构建基于大语言模型应用的复杂性。它通过“链”(Chains)的概念将多个组件连接起来,实现了复杂任务的分解与执行。然而,随着智能体应用场景的日益复杂,传统的LangChain架构在处理长上下文、动态工具调用和多模型协作方面逐渐显露出局限性。 与此同时,模型上下文协议(MCP) 作为一种新兴的标准化协议,专注于解决大语言模型上下文管理的核心挑战。MCP通过标准化接口和协议,使不同模型和工具能够共享、扩展和管理上下文信息,实现了跨会话、跨模型的上下文持久化和智能复用。

2025-12-25

LLM开发工程师入行实战-从0到1开发轻量化私有大模型教程

本文将带你从零开始,探索如何成为一名合格的LLM开发工程师,并完成从0到1的轻量化私有大模型开发实战。 一、LLM开发工程师:定义与核心能力 1.1 什么是LLM开发工程师? LLM开发工程师是专注于大语言模型开发、优化、部署和应用的专业技术人员。与传统AI工程师相比,他们需要掌握大规模预训练模型的精调技术、提示工程、模型压缩与加速以及特定领域的应用开发能力。 1.2 核心技能栈 基础技能:Python编程、PyTorch/TensorFlow框架、数据结构与算法 领域知识:自然语言处理基础、Transformer架构深入理解 模型开发:预训练模型精调(Fine-tuning)、提示工程(Prompt Engineering)、参数高效微调技术(PEFT) 工程能力:模型压缩(剪枝、量化)、模型部署(ONNX、TensorRT)、API开发 特定方向:轻量化模型开发、私有化部署、领域适配优化

2025-12-12

完整13章Dify AI 赋能,零基础构建商业级 AI 应用与工作流

在人工智能浪潮席卷全球的今天,一个令人惊叹的悖论日益凸显:AI技术本身正以前所未有的速度进化,GPT-4、Claude、文心一言等大模型展现出接近人类甚至超越人类的特定能力,然而将这些尖端技术转化为实际商业价值和应用工作流的门槛,却依然让无数企业和个人望而却步。直到Dify.AI的出现,这一局面正在发生根本性改变——一场“AI应用民主化”的技术革命悄然拉开帷幕。 一、技术平权的曙光:从专家专属到大众可及 传统AI应用开发如同中世纪的行会制度,需要掌握Python编程、机器学习框架、云计算部署等一系列专业技能的“AI工匠”才能打造出可用的AI产品。这种高度集中的技术壁垒导致两个严重后果:一是AI应用开发周期漫长、成本高昂,仅有少数资金雄厚的企业能够负担;二是业务需求与技术实现之间存在巨大鸿沟,业务人员难以直接参与AI应用的设计与优化。 Dify.AI以其独特的可视化编排理念,彻底打破了这层技术屏障。平台采用“低代码”甚至“零代码”的交互设计,将复杂的模型调优、应用逻辑编排、知识库管理等环节,转化为直观的拖拽操作和可视化配置。这种设计哲学的背后,是对AI应用开发本质的深刻洞察:大多数商业场景并不需要从头训练模型,而是需要将现有大模型能力与特定业务流程、企业数据有机融合。

2025-12-09

国产金仓数据库(KingBase)从零开始教程

在信息技术自主可控的时代浪潮下,国产数据库正迎来前所未有的发展机遇。作为中国电子信息产业集团(CEC)旗下的核心数据库产品,金仓数据库(KingBase)凭借其卓越的性能和全面的兼容性,正在成为中国企业数字化转型的重要技术支撑。本文将带您从零开始,全面了解金仓数据库的技术特性、安装部署、核心功能及应用实践。 一、金仓数据库的背景与定位 金仓数据库是由北京人大金仓信息技术股份有限公司自主研发的关系型数据库管理系统。它诞生于国家“核高基”重大专项,是中国最早实现商业化的国产数据库之一。经过20多年的发展迭代,金仓数据库已形成了完整的产品生态,广泛应用于政府、金融、能源、电信、教育等多个关键行业领域。 金仓数据库的定位是打造“安全可靠、高性能、易管理”的企业级数据库产品。它采用多进程多线程混合架构,支持多种操作系统平台,提供了完善的SQL标准兼容性、数据安全机制和高可用解决方案。特别是在与Oracle、MySQL等主流数据库的兼容性方面,金仓做了大量优化,使得现有应用系统能够以较低的成本迁移到金仓平台上。

2025-12-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除