istio入门到精通【400节大课】
摘要
本文深入探讨了Istio服务网格的运维实践,旨在帮助运维团队构建高效稳定的云原生基础设施。文章首先介绍了Istio的基本架构和核心组件,然后详细分析了运维中的关键挑战,包括配置管理、性能优化和安全策略实施。通过实际案例和最佳实践,本文提供了可操作的运维指南,帮助读者掌握Istio集群的监控、故障排查和日常维护技巧,最终实现服务网格的高可用性和性能优化。
引言
随着微服务架构的普及,服务间通信的复杂性呈指数级增长。Istio作为开源服务网格解决方案,通过提供流量管理、可观测性和安全功能,显著简化了微服务网络的运维工作。本文将系统性地介绍Istio的运维实践,帮助技术团队克服服务网格管理中的常见挑战,构建稳定高效的生产环境。
一、Istio架构与核心组件
Istio服务网格采用分层架构设计,由数据平面和控制平面组成。数据平面由部署为Sidecar的Envoy代理组成,负责处理所有服务间的网络通信。控制平面则包含Pilot、Citadel、Galley和新增的Istiod等组件,负责配置管理和策略执行。
运维团队需要深入理解各组件功能:Pilot将高级路由规则转换为Envoy特定配置;Citadel处理证书颁发和轮换;Galley负责配置验证和分发。最新版本中,这些功能已整合到Istiod这一单一二进制中,简化了部署但增加了单点故障风险。
【Winform+WPF】喷涂工艺SCADA采集监控上位机
引言
在现代工业自动化领域,**SCADA(Supervisory Control And Data Acquisition,监控与数据采集)**系统扮演着至关重要的角色。作为连接底层设备与操作人员的桥梁,**上位机**软件的质量直接影响整个自动化系统的效率和可靠性。在Windows平台下,**WinForm**和**WPF**是两种主流的UI开发框架,它们各有特点,在SCADA系统开发中都有广泛应用。本文将深入探讨这两种技术在上位机开发中的优劣比较、实际应用场景以及未来发展趋势。
第一部分:WinForm与WPF技术概述
WinForm技术简介
WinForm(Windows Forms)是微软.NET Framework中最早提供的图形用户界面框架,自2002年随.NET 1.0发布以来,已成为Windows桌面应用开发的基石。
**WinForm的主要特点包括:**
- 基于传统的GDI+绘图技术
- 采用事件驱动编程模型
- 控件工具箱丰富,开发效率高
- 对硬件要求低,运行效率高
- 成熟稳定,有大量现成组件和代码资源
17章计算机视觉-YOLO+Transfomer多场景目标检测实战
1. 引言
目标检测是计算机视觉领域的核心任务之一,广泛应用于自动驾驶、安防监控、工业质检、医疗影像分析等领域。近年来,基于深度学习的目标检测算法取得了显著进展,其中 YOLO(You Only Look Once) 系列和 Transformer 架构分别代表了卷积神经网络(CNN)和自注意力机制在目标检测中的成功应用。
然而,CNN擅长局部特征提取,而Transformer擅长建模全局依赖关系,二者的结合(如 YOLO + Transformer )成为研究热点。本文将从YOLO和Transformer的原理出发,分析二者的融合方式,并探讨如何在实际多场景目标检测任务中应用这些技术。
2. YOLO目标检测:速度与精度的平衡
2.1 YOLO的核心思想
YOLO由Joseph Redmon等人于2016年提出,其核心思想是 将目标检测视为单阶段的回归问题 ,直接在输入图像上预测边界框和类别概率,从而实现极高的检测速度。
YOLO的主要优势包括:
- 实时性 :单次前向传播即可完成检测,适合高帧率场景(如视频监控)。
- 端到端训练 :无需复杂的区域提议(如Faster R-CNN的两阶段检测)。
- 轻量化设计 :YOLOv3、YOLOv4、YOLOv5等版本不断优化计算效率。
完结20章Java高手提薪精选-Spring源码解析到手写核心组件
一、Spring框架的核心设计思想
Spring框架自2003年问世以来,已经成为Java企业级开发的事实标准。要真正掌握Spring,不能仅停留在使用层面,而需要深入理解其设计哲学和实现原理。Spring的核心设计思想可以概括为三点:控制反转(IoC)、依赖注入(DI)和面向切面编程(AOP)。
控制反转是一种设计原则,它将传统上由程序代码直接操控的对象创建和管理权转移给容器。这种思想的革命性在于,它改变了组件之间的依赖关系从"硬编码"变为"动态注入"。依赖注入是控制反转的具体实现方式,通过构造函数、setter方法或接口注入等方式,在运行时动态地将依赖关系注入到组件中。
面向切面编程则提供了一种将横切关注点(如日志、事务、安全等)与核心业务逻辑分离的方法。通过代理模式,Spring能够在运行时动态地将这些横切逻辑织入到目标方法中,实现了关注点的真正分离。
理解这些核心思想后,我们才能更好地分析Spring源码,因为整个框架都是围绕这些理念构建的。Spring的设计者们通过精妙的设计模式应用,将这些抽象概念转化为可运行的代码实现。
零基础程序员数学体系课
前言:
AI在可预见的多年内还将以爆发的态势增长,AI人才需求与日俱增,但普通程序员困于没有扎实的专业数学基础,局限在AI应用层开发,在进一步构建自己的AI模型、调参优化、处理数据并评估性能方面无法突破,甚至很多教程也基于有相关高等数学基础而设计,对于大部分毕业后再未接触过数学的开发人员有相当的难度,鉴于此本课程严选AI强关联数学干货,降低学习门槛、可视化呈现、数学与代码结合的程序员友好课程设计,广泛覆盖AI所必备的数学基础,旨在消除程序员在深入AI领域的数学屏障。
一、数学与人工智能
数学是人工智能的理论基础与技术核心,两者存在双向驱动关系。数学为AI模型构建、算法设计及理论分析提供工具,而AI的发展也推动数学新领域的探索。从线性代数到概率论,数学支撑着机器学习、深度学习等关键技术,同时AI的复杂需求促使数学方法不断革新。
二、数学构成人工智能的理论框架
线性代数与数据表示
矩阵运算、向量空间理论是神经网络架构的核心。图像识别中的卷积操作本质是矩阵点乘,自然语言处理中的词嵌入依赖高维向量空间映射。
微积分与优化机制
反向传播算法建立在多元微积分的链式法则之上,梯度下降法通过导数寻找损失函数极小值。深度学习模型的参数更新本质是微分方程求解过程。
概率统计与不确定性建模
贝叶斯网络利用条件概率构建推理系统,蒙特卡洛方法支撑强化学习的决策过程。统计学习理论为机器学习泛化能力提供数学证明。
完结14章RAG全栈技术从基础到精通 ,打造高精准AI应用
一、RAG是什么?
RAG是一种结合检索(Retrieval)和生成(Generation)的技术,主要用于让AI在回答问题或生成内容时,能够更好地利用外部知识库,而不是完全依赖于自身预训练的知识。简单来说,它就像是给AI配了一个“外挂”,让它在回答问题时可以先去知识库中查找相关的资料,然后再生成答案。
二、RAG的工作原理
RAG的工作可以分为三个阶段:
(1)检索(Retrieval)
用户提出问题后,RAG会先将问题转换成一个“向量”(一种数学表示),然后在知识库中查找最相关的向量。
知识库中的内容会被提前处理成向量,并存储在一个叫 “向量数据库” 的地方。这个数据库可以根据语义理解来检索数据,而不是单纯靠关键词匹配。
比如,你问“如何做巧克力蛋糕”,RAG会在知识库中找到与“巧克力蛋糕制作”最相关的资料片段。
(2)增强(Augmented)
找到相关资料后,RAG会把资料和用户的问题组合在一起,形成一个新的输入,送给大模型。
这就好比你给AI提供了一个“提示”,让它在回答问题时有更具体的参考。
(3)生成(Generation)
最后,AI根据组合后的输入生成答案。因为有知识库的支持,生成的内容会更准确、更有针对性
完结14章Vue3.5+Electron+大模型 跨平台AI桌面聊天应用实战
一、桌面软件开发的痛点与挑战
尽管桌面软件开发在现代应用开发中占据重要地位,但其过程却充满了复杂性和挑战。传统开发方式通常需要开发者具备深厚的技术背景和丰富的经验,尤其是在面对复杂的业务逻辑、多语言支持以及跨平台需求时,开发效率往往会受到严重限制。此外,代码质量、性能优化和功能扩展等问题也常常让开发者头疼不已。
这些问题的存在使得许多初学者望而却步,同时也增加了企业开发成本和时间投入。然而,随着AI技术的引入,这些痛点正在被逐步解决。AI不仅可以帮助开发者快速生成高质量代码,还能提供智能调试、性能优化等辅助功能,极大提升了开发效率和代码质量。
二、AI驱动的桌面软件开发新范式
1. 智能化工具的崛起——以InsCode AI IDE为例
作为新一代AI驱动的集成开发环境(IDE),InsCode AI IDE重新定义了桌面软件开发的边界。它内置了一个强大的AI对话框,允许开发者通过自然语言描述需求,从而快速生成代码。无论是简单的用户界面设计还是复杂的算法实现,InsCode AI IDE都能轻松应对。
C#+WPF+Opencv模块化开发视觉对位运动控制系统
一、市场应用背景
随着平板显示器(包括TFT/LCD、PDP和OLED)等产品的尺寸增大,以及同时需要兼容小型化高精度产品的需求加剧,各大厂商对视觉对位工艺流程的负载能力、移动平台范围、效率和精度提出了更高的要求。因此,UVW对位平台成为满足这些需求用户的理想选择。
UVW对位平台,也称XXY对位平台,属于三轴并联运动机构,通过三个线性运动轴的协同控制,能够实现以平面上任意一点的中心旋转和任意方向平移。配合CCD视觉系统,平台在X-Y平面和θ角度进行精密微调,从而达到高精度视觉对位功能,精度可达±0.001mm。
二、市面上常见的传统方案:
传统方案通常需要组合多个独立组件,包括机器人控制柜、工控机、视觉软件、PLC以及定制开发的工艺包程序,不仅增加了系统复杂性,还提高了成本和开发周期。
受限于传统多组件集成方式,往往会面临以下问题:
1.配件多、接线繁琐、故障排查麻烦、开发周期长;
2.视觉与运动控制之间的数据交互效率不高;
3.软硬集成度不高,功能整合度低;
4.多套硬件初始成本和维护成本高。
2025新品java-antd-web3全栈dapp开发教程
一、什么是区块链dapp开发?它能做什么?
简单来说,区块链dapp开发是指利用区块链技术来开发分布式应用(dapp)。dapp是一种使用区块链技术构建的分布式应用,它具有更高的安全性和去中心化特性,可以用来建立加密的账本,以保证交易的安全性。
区块链dapp开发有以下几个主要作用:
1. 安全性:dapp使用区块链技术记录信息和数据,并将其存储在一个加密的账本上,从而拥有更高的安全性,可以有效防止信息泄露和数据被篡改
2. 去中心化:dapp不受中心化系统的限制,不存在单点故障,更加稳定,可以提供更高的可用性。
3. 交易透明:dapp使用区块链技术记录完整的交易信息,使得交易更加透明,可以更好的保护用户的利益。
二、DAPP的核心特征
去中心化:没有中心服务器,数据存储在区块链上,由多个节点共同维护。
开源:代码公开透明,任何人都可以审查和验证。
激励机制:通常使用代币(Token)激励用户参与网络维护。
智能合约驱动:业务逻辑由智能合约自动执行,减少人为干预。
多智能体开发框架之LangGraph全面剖析实战课
一、什么是LangGraph
LangGraph是一个基于图结构的工具库,用于创建代理和多代理智能体工作流。它是LangChainAI生态系统的一部分,旨在通过将应用逻辑组织成有向图的形式,提供一种直观和灵活的方式来构建复杂的LLM(大型语言模型)应用。
二、主要特性
状态持久化:LangGraph支持状态的持久化,可以自动保存和管理状态,支持暂停和恢复执行,特别适合处理长时间运行的对话。
循环和分支能力:LangGraph支持条件语句和循环结构,可以根据状态动态决定执行路径,轻松实现复杂的对话流程控制。
多智能体开发:支持多智能体开发,可以在一个系统中同时运行多个智能体,实现复杂的交互逻辑。
人机交互支持:可以在执行过程中插入人工审核,支持编辑和修改状态,提供灵活的交互控制机制。
流式处理:支持流式输出,实时反馈执行状态,提升用户体验。
三、LangGraph 与 LangChain
LangGraph 并不是一个独立于 LangChain 的新框架,而是在 LLM 和 LangChain 的基础之上构建的一个扩展库,可以于 LangChain
完结11章SpringBoot 3.x + Netty + MQTT 实战物联网智能充电桩
一、MQTT是一种轻量级的消息传输协议,特别适用于物联网(IoT)场景,具有低带宽、高延迟网络环境下的优势,SpringBoot作为流行的 Java开发框架,能够方便地与MQTT集成,实现高效的消息通信,本文将详细介绍如何在SpringBoot项目中接入MQTT,需要的朋友可以参考下。
二、什么是MQTT
MQTT(Message Queuing Telemetry Transport)是一种轻量级的消息传输协议,特别适用于物联网(IoT)场景,具有低带宽、高延迟网络环境下的优势。Spring Boot 作为流行的 Java 开发框架,能够方便地与 MQTT 集成,实现高效的消息通信。本文将详细介绍如何在 Spring Boot 项目中接入 MQTT。
三、Springboot+Netty搭建MQTT协议的服务端
Netty是业界最流行的nio框架之一,结合springboot可以满足快速开发
MQTT(Message Queuing Telemetry Transport,消息队列遥测传输协议),是一种基于发布/订阅(publish/subscribe)模式的"轻量级"通讯协议,
完结20周LLM应用开发平台特训营
首先,LLM 全称是 Large Language Model,即大语言模型,其参数量较大,一般的70 亿以上参数的模型占用约 28G 存储,直观来说就是有一堆28G浮点数(训练得到)作为权重参数的函数可拷入 U 盘就能带走大模型本体。实现方式简单来说就是设计一个极大的非线性函数进行拟合计算,它们会接收你提供的一些文本作为输入,并猜测下一个出现概率最大的词(更准确地说,下一个token)是什么。
Token 和词表:Token 是文本的片段,也是 LLM 理解的文本基本单位,语言模型有一个词表,包括 token 列表及对应的 id,词表大小因语言不同而不同,多语言词表往往有几万个 token 甚至更多。例如GPT-2的词汇表就有50257个token,LLM 词汇中的每个 Token 都有一个唯一的标识符
一、LLM (大型语言模型)都有哪些潜在应用场景?
1.聊天机器人与虚拟助手:LLM可以作为聊天机器人和虚拟助手的核心,为用户提供自然、连贯的对话体验。
2.内容创作:LLM可以自动生成文章、新闻报道、广告文案、诗歌、小说等文本内容。
3.教育与辅导:在教育领域,LLM可以用于辅
完结10章DeepSeek+SpringAI实战AI家庭医生应用
一、什么是SpringAI?
Spring AI是Spring生态中应用于人工智能领域的应用框架,它的目标是将Spring 生态系统的设计原则(如可移植性、模块化设计)应用于AI领域,并在AI领域中推广使用POJO(Plain Old Java Objects)作为应用的构建模块。
二、Spring AI能做什么?
支持目前主流大语言模型平台,例如 OpenAI、Microsoft、Amazon、Google 和 Huggingface;
支持阻塞与流式的文本对话;
支持图像生成(当前仅限OpenAI的dall-e-*模型和SD);
支持嵌入模型;
支持LLM生成的内容转为POJO;
支持主流的向量数据库或平台:Azure Vector Search, Chroma, Milvus, Neo4j, PostgreSQL/PGVector, PineCone, Qdrant, Redis 和 Weaviate
支持函数调用
支持自动装配和启动器(与Spring Boot完美集成);
提供用于数据处理工程的ETL框架;
完结LLM算法工程师全能实战训练营
一、LLM 架构
编码器-解码器Transformer架构:更具体地说是 decoder only 的Transformer 架构,这是 LLMs 的基础,几乎所有的生成大语言模型都会用到这个架构。
Tokenization:了解如何将原始文本数据转换为模型可以理解的格式
注意力机制:掌握注意力机制背后的理论,包括自注意力和缩放点积注意力,这使模型在生成输出时能够专注于输入的不同部分。
文本生成:了解模型生成输出序列的不同方式。常见的策略包括贪心解码(greedy decoding), 束搜索(beam search), top-k 采样 和 nucleus sampling(top-p sampling)
RAG全栈技术从基础到精通 ,打造高精准AI应用
一、什么是RAG
RAG 即“检索增强生成”(Retrieval Augmented Generation),这项技术通过将大量外部数据与基础模型相结合,显著增强了语言模型(LLM)的能力,使得AI的回应更加真实、个性化和可靠。
RAG 技术的核心在于结合了检索(Retrieval)和生成(Generation)两大核心技术。在处理复杂的查询和生成任务时,RAG 首先通过检索模块从大量数据中找到与查询最相关的信息,然后生成模块会利用这些检索到的信息来构建回答或生成文本。
自2020年提出以来,从最初的朴素RAG(Naive Rag),到高级RAG(Advance Rag),再到模块化RAG(Modular Rag),RAG系统不断优化和迭代,以解决实际应用中遇到的问题,如索引环节中的核心知识淹没问题、「检索环节中的用户意图理解不准确问题」,以及生成环节中的冗余信息干扰问题等
11章SpringBoot 3.x + Netty + MQTT 实战物联网智能充电桩
一、什么是MQTT
MQTT(消息队列遥测传输)是ISO 标准(ISO/IEC PRF 20922)下基于发布订阅范式的消息协议。它工作在 TCP/IP协议之上,是为硬件性能低下的远程设备以及网络状况糟糕的情况下而设计的发布/订阅型消息协议,为此,它需要一个消息中间件 。
MQTT是一个基于客户端-服务器的消息发布/订阅传输协议。MQTT协议是轻量、简单、开放和易于实现的,这些特点使它适用范围非常广泛。在很多情况下,包括受限的环境中,如:机器与机器(M2M)通信和物联网(IoT)。其在,通过卫星链路通信传感器、偶尔拨号的医疗设备、智能家居、及一些小型化设备中已广泛使用。
二、MQTT 特点
轻量级协议:
设计简单,占用带宽少,特别适合嵌入式设备和不稳定的网络环境。
发布/订阅模型:
客户端通过主题(Topic)发布消息,订阅者通过主题接收消息,彼此不直接通信。
可靠性保障:
提供三种服务质量(QoS)等级,确保消息可靠传输:
QoS 0:至多一次(不确认,可能丢失)。
QoS 1:至少一次(需要确认,但可能重复)。
QoS 2:仅一次(确保消息不丢失且不重复)。
C#高级编程:从零基础入门到高级语法全集
前言:
无论你是编程新手,还是想要深化.NET技能的开发者,本文都将为你提供一条清晰的学习路径,从C#基础到高级特性,每一站都配有详尽解析和实用示例,旨在帮助你建立坚实的知识体系,并激发你对C#及.NET生态的热情。
本文以C#需要掌握的高级开发技术为主线,带你快速掌握C#开发中核心知识,少走弯路,节省时间;希望本文对你的学习编程知识有所帮助,同时也感谢大家的支持!
一、struct结构体
和class一样也可以创建对象
使用结构体来声明和初始化对象的时候,我们不需要使用new关键词。
直接在声明对象完成以后,对象就会被同时创建完成,并且在内存中分配了相应的内存。
同样可以使用对象的链式调用方式来给结构赋值
结构体是从c++流传下来的一种比较特殊的语法结构,而类似java和python之类的高级语言已经抛弃这种语法了。
React UI组件库教程
一、3个最受欢迎的React UI 组件库
1. MUI
Material-UI 是一个开源的 React 组件库,实现了 Google 的 Material Design。它是一个全面的预构建 UI 组件集合,可以立即在生产中使用。
特点:
全面的组件集合: Material-UI 包括许多组件,包括按钮、菜单、表单、表格等。
移动优先的方法: Material-UI 设计为移动优先,这意味着这些组件在任何设备上都会表现出色,从智能手机到桌面设备。
可定制: Material-UI 组件可以轻松定制,以匹配你的品牌指南或应用的设计。
可访问性: Material-UI 组件考虑了可访问性,这意味着残障人士也可以使用它们。
主题化: Material-UI 支持主题,因此你可以轻松地更改应用的外观和感觉
2. Headless UI
Headless UI 是一个提供完全未样式化、完全可访问的 UI 组件的 React 库,旨在与 Tailwind CSS 无缝集成。
与传统的 CSS-in-JS 库不同,Headless UI 注重组件的行为和可访问性,完全由你来负责视觉样式。
特
Cesium可视化系统实战课程
一、Cesium介绍
Cesium是便用JavaScript开发的基于WebGL的实现三维地球和地图可视化的JS库,Cesium支持海量的三维模型数据,影像数据,地形高程数据,矢量数据等丰富的地理数据的加载。在交通,规划,城市管理,地形仿真等领城有非常广泛的应用。Cesium为三维的GIS提供了一个高效的数据可视化平台。
二、Cesium特性
1)支持多种视图
能够以 2D、2.5D 和 3D 形式对地图进行展示,并且无需分别编写代码。
2)支持地理信息数据动态可视化
a. 能够使用时间轴动态展示具有时间属性的数据。
b. 能够使用符合 OGC 标准的 WMS、WMTS 等多种地图服务,并且通过流式传输图像和全球地形。
c. 能够通过加载 KML、GeoJSON 等格式的数据绘制矢量图形。
d. 支持加载 3D Tiles 和 glTF 格式的三维模型,其中 3D Tiles 可以加载点云、倾斜摄影等大规模模型数据。
3)高性能和高精度的内置方法
a. 对 WebGL 进行优化,充分利用硬件加速功能,使用底层渲染方法进行可视化。
b. 提供了可以绘制大型折线、多边形、
完结9章AI 摄影变现:ComfyUI 可变现项目全流程实战
一、ComfyUI简介
ComfyUI是一种新型的Stable Diffusion用户界面,因其独树一帜的“节点式”界面,逐渐成为了AI绘画领域进阶玩家的得力武器。搭配各式各样的自定义节点与功能强大的工作流,它得以用更低的配置实现许多在WebUI等常规界面里无法做到的复杂生成任务,并为基于Stable Diffusion搭建各类AIGC应用提供了便利。
ComfyUI 是一个基于节点流程式的stable diffusion AI 绘图工具WebUI, 你可以把它想象成集成了stable diffusion功能的substance designer, 通过将stable diffusion的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。但节点式的工作流也提高了一部分使用门槛。
同时,因为内部生成流程做了优化,生成图片时的速度相较于webui又10%~25%的提升(根据不同显卡提升幅度不同),生成大图片的时候不会爆显存,只是图片太大时,会因为切块运算的导致图片碎裂。
2024信创AI智能运维云原生课程
前言:
不了解AI的时候,往往会将其视为洪水猛兽,因为AI确实具有颠覆一切的巨大能量;但是当你慢慢接近它、拥抱它甚至尝试驾驭它,你会发现AI如同其他许多新技术一样,都需要扎根的土壤、生长的养分和成熟过程中适宜的环境等。
“云原生是AI的重要承载。”青云科技云原生产品负责人于爽举例说,“英伟达的整个技术栈就是围绕着Kubernetes云原生架构构建的,并没有创造出一个新的软件平台将硬件能力变现。许多第三方市场机构的报告也揭示出,AI应用服务底层的承载方仍以云原生和Kubernetes为主。无论技术如何变化,‘最接地气’的还是云原生相关的整个技术栈。”
40周全物联网/嵌入式全能工程师(提薪优选)
一、学嵌入式需要什么基础
1、嵌入式系统是紧密结合硬件和软件的计算平台,因此掌握电子技术和计算机基础知识是学习嵌入式的必要基础。具体来说,这包括:
电子技术:了解模拟和数字电路的基本原理,熟悉电路图读图和设计基础。
计算机基础:深入理解计算机的基本构成和运行原理,包括处理器、内存、输入输出接口等。
编程语言:掌握一种或多种编程语言,如C/C++、Python等。
2、控制系统与自动化基础
嵌入式系统在工业控制、智能家居、自动驾驶等领域有着广泛的应用,因此学习嵌入式也需要一定的控制系统和自动化基础知识。这包括:
控制系统:了解控制系统的基本构成和分类,掌握常见的控制算法如PID等。
自动化基础:熟悉自动化设备和仪器,了解自动化控制原理和实现方法。
UE5虚幻引擎UEC++从基础到进阶
一、虚幻引擎简介
虚幻引擎是由 Epic Games 开发的一款高性能游戏引擎,以其逼真的图形渲染能力而闻名。虚幻引擎广泛用于 AAA 级游戏、电影和虚拟现实等领域,其对高精度视觉效果的支持让其成为大规模项目的首选。
二、虚幻引擎的主要特点
顶级图形渲染:虚幻引擎采用的渲染技术,包括光照、粒子系统和物理模拟等,使其在视觉效果上拥有极高的逼真度。虚幻引擎 5 更是引入了全新的“Nanite”和“Lumen”技术,实现了超高分辨率几何细节和实时全局光照效果。
蓝图系统(Blueprint):虚幻引擎提供了蓝图可视化编程系统,开发者无需编写代码就可以通过拖拽节点来实现复杂的游戏逻辑,降低了编程门槛。
强大的物理引擎:虚幻引擎内置的物理引擎非常强大,尤其在大规模场景和复杂物理互动方面表现出色。
2024更新 Electron+React+七牛云实战跨平台桌面应用
一、Electron 是什么
是一个用 HTML,CSS 和 JavaScript 来构建跨平台桌面应用程序的一个开源库
二、Electron 何时出现的,为什么会出现?
于 2013 年作为构建 Atom 的框架而被开发出来。这两个项目在 2014 春季开源。 (Atom:为 Github 上可编程的文本编辑器)
三、Electron 的核心理念是什么?
核心理念是:保持 的体积小和可持续性开发。 如:为了保持 的小巧 (文件体积) 和可持续性开发 (以防依赖库和 的泛滥) , 限制了所使用的核心项目的数量。 比如 只用了 的渲染库而不是其全部组件。这使得升级 更加容易,但也意味着 缺少了 Google Chrome 里的一些浏览器相关的特性。 添加到 的新功能应该主要是原生 。 如果可以的话,一个功能应该尽可能的成 为一个 模块。
Python小白办公自动化实用高薪课
学习如何使用 Python 进行办公自动化和应用开发是非常实用和有趣的!下面是一些步骤和建议,帮助你开始学习和应用 Python 来简化办公任务和开发实用的应用程序:
1. 掌握 Python 基础知识
首先,确保你掌握了 Python 的基础知识,包括:
- 变量、数据类型和运算符
- 控制流程(条件语句和循环)
- 函数和模块的定义与使用
- 文件操作和异常处理等
大模型Llama架构:从理论到实战
LLaMA(Large Language Model Meta AI),这个由Meta AI开发的大型语言模型,自2023年2月问世以来,便以其出色的性能和广泛的应用前景吸引了众多关注。本文将对LLaMA大模型进行全面剖析与解读,带您深入了解其架构、特点、训练数据及算法优势。
一、LLaMA模型架构
LLaMA模型的核心架构基于Transformer,但与标准的Transformer结构有所不同。它采用了前置层归一化(Pre-normalization)并使用RMSNorm归一化函数,同时激活函数更换为了SwiGLU,并使用了旋转位置嵌入(RoPE)。这些改进使得LLaMA在训练过程中更加稳定,提高了模型的性能。
前置层归一化:LLaMA将归一化操作从Transformer子层的输出移到了输入,第一层归一化设置在多头注意力层之前,第二层归一化移动到全连接层之前。这种设计有助于减少梯度消失或爆炸的问题。
RMSNorm归一化函数:RMSNorm是一种基于均方根(RMS)的归一化方法,不依赖于均值,而是通过计算特征向量的RMS值来进行归一化。在LLaMA中,RMSNorm还加入了可学习
完结24周Java高级工程师体系课(附源码+电子书)
一、环境配置与容器化Docker
环境配置与容器化是现代软件开发中的重要组成部分,特别是在使用Docker这样的容器化技术时。下面我将详细介绍如何进行环境配置并使用Docker来容器化应用程序。
1. 环境准备
1.1 安装Docker
首先需要确保你的机器上已经安装了Docker。如果尚未安装,请访问Docker官方文档获取适用于你操作系统的安装指南。
1.2 配置Docker
安装完成后,你可以通过命令行工具docker来进行基本的配置。例如,设置Docker守护进程的参数或者创建镜像仓库。
2. Dockerfile
Dockerfile 是一个文本文件,其中包含了一系列的指令,用于构建Docker镜像。下面是一个简单的示例,用于构建一个基于Node.js的应用程序的Docker镜像。
2.1 创建Dockerfile
假设你有一个Node.js应用程序,其目录结构如下:
my-app/
|-- package.json
|-- src/
| |-- index.js
|-- Dockerfile
[完结16章附课件]手把手带你实战一线大厂微服务全链路追踪
随着微服务架构的流行,服务按照不同的维度进行拆分,一次请求往往需要涉及到多个服务。
互联网应用构建在不同的软件模块集上,这些软件模块,有可能是由不同的团队开发、可能使用不同的编程语言来实现、有可能布在了几千台服务器,横跨多个不同的数据中心。
因此,就需要一些可以帮助理解系统行为、用于分析性能问题的工具,以便发生故障的时候,能够快速定位和解决问题。
全链路监控组件就在这样的问题背景下产生了。最出名的是谷歌公开的论文提到的 Google Dapper。
想要在这个上下文中理解分布式系统的行为,就需要监控那些横跨了不同的应用、不同的服务器之间的关联动作。
所以,在复杂的微服务架构系统中,几乎每一个前端请求都会形成一个复杂的分布式服务调用链路。
一、为什么要进行全链路监控
在微服务架构中,服务会被拆分成多个模块,这些模块可能由不同的开发团队开发、维护,也可能使用不同的编程语言来实现、也有可能分布在多台服务器上,由于服务的拆分,单个用户的请求会经过多个微服务,相互之间形成复杂的调用关系,传统的监控手段已经不能实现如此复杂的链路之间的监控了,因此,就需要一些可以帮助理解系统行为、用于分析性能问题
C#上位机开发与工控通讯实战
前言:
C# 是一门功能强大的语言,尤其适用于开发上位机(即与硬件设备进行通信和控制的计算机系统)。上位机开发通常涉及串口通信、数据处理、界面设计等多个方面。在本篇文章中,我们将从新手到大神的角度,逐步解析 C# 上位机开发中的关键知识点和代码实例,帮助你从零开始,逐步成为上位机开发的高手。
一、上位机开发简介
上位机通常是与硬件设备(如嵌入式系统、PLC、传感器等)进行通信的计算机程序。它的作用是通过某种通信协议(如串口、TCP/IP 等)向设备发送命令,并接收设备的反馈数据。上位机需要有一个图形用户界面(GUI)来展示数据或控制硬件设备。
常见的上位机开发应用:
串口通信:与硬件设备通过串口进行数据交互。
图形界面:为用户提供可视化操作界面,如按钮、表格、图表等。
数据处理与分析:对设备返回的数据进行实时分析、存储、报表等处理。
OpenGL小白到精通(中级篇)
一、什么是OpenGL
OpenGL(Open Graphics Library)是一个跨编程语言、跨平台的编程图形程序接口,它将计算机的资源抽象称为“OpenG的对象”,将资源的操作抽象为“OpenGL指令”。
OpenGL ES(OpenGL for Embedded Systems)是 OpenGL 三维图形 API 的子集,针对手机、PDA和游戏主机等嵌入式设备而设计,去除了许多不必要和性能较低的API接口。
本文介绍的OpenGL是基于OpenGLES 3.0的版本,也是目前覆盖率最高的OpenGL版本,目前被广泛运用在各种终端设备上。
OpenGL是图形API,因此可以说所有的运算和结果最终都是需要通过图像进行输出。既然要绘图,那必然就需要有一块画板,帧缓冲区就是OpenGL中的画板。但是特别需要注意的是,帧缓冲区不是常规意义缓冲区,它并不是实际存储数据的对象,类似画画的时候,需要在画板上放一块画布,才能实际在画布上进行绘画,这些画布可以是纹理(Texture)或者是渲染缓冲区(RenderBuffer),而放置这些画布的位置被称为帧缓冲区的附着(Attachment)。
Transformer自注意机制精讲
一、 Transformer是什么
Transformer是一种用于自然语言处理(NLP)和其他序列到序列任务的深度学习模型架构。Transformer架构引入了自注意力机制,这是一个关键的创新,使其在处理序列数据是表现出色。
以下是Transformer的一些重要组成部分和特点:
自注意力机制(Self-Attention):这是Transformer的核心概念之一,它使模型能够同时考虑输入序列中的所有位置,而不是像循环神经网络(RNN)或卷积神经网络(CNN)一样的逐步处理。自注意力机制允许模型根据输入序列中的不同部分来赋予不同的注意权重,从而更好的捕捉语义关系。
多头注意力(Multi-Head Attention):Transformer中的自注意力机制被扩展为多个注意力头,每个头可以学习不同的注意权重,以更好地捕捉不同类型的关系。多头注意力允许模型并行处理不同的信息子空间。
堆叠层(Stacked Layers):Transformer通常由多个相同的编码器和解码器堆叠而成。这些堆叠的层有助于模型学习复杂的特征表示和语义。
位置编码(Positional Encoding
完结36章NestJS从拔高到精通,大型复杂业务架构落地实践
一、什么是 NestJS
简单来说 NestJS 就是一个 NodeJS 服务端框架,它完全支持 TypeScript,并且有自己一套架构模式,开发者需要按照 NestJS 要求的架构来组织代码,而这套架构思想接近于传统后端的开发框架,所以作为一个完全的前端开发者理解起来相对来说会有些出入。下面是官网的介绍
Nest (NestJS) 是一个用于构建高效、可扩展的 Node.js 服务器端应用程序的开发框架。它利用 JavaScript 的渐进增强的能力,使用并完全支持 TypeScript (仍然允许开发者使用纯 JavaScript 进行开发),并结合了 OOP (面向对象编程)、FP (函数式编程)和 FRP (函数响应式编程)。在底层,Nest 构建在强大的 HTTP 服务器框架上,例如 Express (默认),并且还可以通过配置从而使用 Fastify !
二、Nest.js 的定位和应用领域
NestJS是目前Node平台上最受欢迎的企业级开发框架之一,其提供了IOC、AOP、微服务等架构特性。通常情况下,Node应用的开发可以分为三个层次:
直接使用http、ht
多模态大模型 前沿算法与实战应用
一、什么是多模态(multimodal)
模态指的是数据或者信息的表现形式,如文本、图像、音频、视频等
多模态指的是数据或者信息的多种表现形式,一个信息,它可以存在多种表现形式。
二、为什么会有多模态呢?
因为人类有多种感官来处理信息:比如听觉、嗅觉、视觉、触觉、味觉等,它们都可以获取并且处理不同形式的信息。
为了让计算机具备分析互联网数据的能力、模拟人类的认知方式,同时处理多个模态数据的多模态信息处理技术应运而生
三、多模态理解
多模态理解是指从多个不同模态(如视觉、听觉、语言等)的数据中提取和融合信息,以便更深入地理解和推断数据的含义。这种跨模态的信息整合能力对于构建更加智能、更加贴近人类认知的人工智能系统至关重要。