感知机
感知机是一种最简单的线性二分类模型,可以在输入空间(特征空间)将实例划分为正负两类。
感知机学习算法的原始形式
对于输入空间,感知机通过以下函数将其映射至{+1,-1}的输出空间
f(x)=sign(w⋅x+b)
对于所有的错分类点i∈M,都有−yi(w⋅xi+b)>0,因此我们可以定义如下的损失函数作为优化准则:
我们很容易就可以得到感知机学习算法的原始形式.
(1)
整个算法流程如下:
1. 选取初值w0,b0
2. 在训练集中任意选取点(xi,yi)
3. 如果−yi(w⋅xi+b)>0则按照(1)式更新w,b
4. 重复2直到没有被误分的点
以上即为感知机算法的原始形式。
感知机学习算法的对偶形式
对偶形式的基本想法是,将w和b表示为实例xi 和标记 yi的线性组合的形式,通过求解其系数而求得w和b.
假设w0=0,b=0,那么从(1)式可以看出,当所有的点均不发生误判时,最后的w,b一定有如下的形式:
、
其中αi=niη中ni代表对第i个样本的学习次数,感知机对偶形式的完整形式即为:
- 初始化α=0,b=0.
- 任意选取(xi,yi)
- 如果,即发生误判,则对αi,b进行更新:
(注:此处对αi,bi的更新仅利用(xi,yi))
- 重复2直到所有点都被正确分类
原始形式和对偶形式对参数b的处理是相同的。