感知机

感知机

感知机是一种最简单的线性二分类模型,可以在输入空间(特征空间)将实例划分为正负两类。

感知机学习算法的原始形式

对于输入空间,感知机通过以下函数将其映射至{+1,-1}的输出空间 

f(x)=sign(w⋅x+b)                     
对于所有的错分类点i∈M,都有−yi(w⋅xi+b)>0,因此我们可以定义如下的损失函数作为优化准则: 

               
通过求解损失函数的梯度, 

我们很容易就可以得到感知机学习算法的原始形式. 


                                                                                                                                                                    (1) 
整个算法流程如下:

1.   选取初值w0,b0

2.   在训练集中任意选取点(xi,yi)

3.   如果−yi(w⋅xi+b)>0则按照(1)式更新w,b

4.   重复2直到没有被误分的点

以上即为感知机算法的原始形式。

感知机学习算法的对偶形式

对偶形式的基本想法是,将w和b表示为实例xi 和标记 yi的线性组合的形式,通过求解其系数而求得w和b.

假设w0=0,b=0,那么从(1)式可以看出,当所有的点均不发生误判时,最后的w,b一定有如下的形式: 

                    、
其中αi=niη中ni代表对第i个样本的学习次数,感知机对偶形式的完整形式即为: 

  1. 初始化α=0,b=0.
  2. 任意选取(xi,yi)
  3. 如果,即发生误判,则对αi,b进行更新: 

(注:此处对αi,bi的更新仅利用(xi,yi))

  1. 重复2直到所有点都被正确分类
感知机的对偶形式就是把对w,b的学习变成了对α,b的学习,原始形式中,w在每一轮迭代错分时都需要更新,而采用对偶形式时,对于某一点(xi,yi)发生错分时,我们只需要更新其对应的αi即可,即可一次计算出w。 
原始形式和对偶形式对参数b的处理是相同的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值