昇思MindSpore学习笔记9--保存与加载

摘要:

昇思MindSpore支持checkpoint和MindIR两种形式的模型保存和加载。

保存和加载模型,便于微调fine-tune和后续的模型推理与部署。

一、环境准备

安装minspore模块

!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.3.0rc1

导入numpy、minspore、nn、Tensor等相关模块i

import numpy as np
import mindspore
from mindspore import nn
from mindspore import Tensor

准备神经网络

def network():
    model = nn.SequentialCell(
                nn.Flatten(),
                nn.Dense(28*28, 512),
                nn.ReLU(),
                nn.Dense(512, 512),
                nn.ReLU(),
                nn.Dense(512, 10))
    return model

二、保存和加载模型权重

save_checkpoint接口保存模型

参数为神经网络和保存路径:

model = network()
mindspore.save_checkpoint(model, "model.ckpt")

加载模型权重

创建模型实例

加载模型load_checkpoint

加载参数load_param_into_net

model = network()
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)

输出:

[]

param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。

三、保存和加载MindIR

IRIntermediate Representation)中间表示

MindSpore定义了云侧(训练)和端侧(推理)统一的IR模型格式。

export接口直接将模型保存为MindIR同时保存了Checkpoint和模型结构。

参数为神经网络、存储张量、保存路径和文件格式。

model = network()
inputs = Tensor(np.ones([1, 1, 28, 28]).astype(np.float32))
mindspore.export(model, inputs, file_name="model", file_format="MINDIR")

load接口加载MindIR模型

nn.GraphCell图模式推理

mindspore.set_context(mode=mindspore.GRAPH_MODE)
​
graph = mindspore.load("model.mindir")
model = nn.GraphCell(graph)
outputs = model(inputs)
print(outputs.shape)

输出:

(1, 10)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

muren

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值