摘要:
昇思MindSpore支持checkpoint和MindIR两种形式的模型保存和加载。
保存和加载模型,便于微调fine-tune和后续的模型推理与部署。
一、环境准备
安装minspore模块
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.3.0rc1
导入numpy、minspore、nn、Tensor等相关模块i
import numpy as np
import mindspore
from mindspore import nn
from mindspore import Tensor
准备神经网络
def network():
model = nn.SequentialCell(
nn.Flatten(),
nn.Dense(28*28, 512),
nn.ReLU(),
nn.Dense(512, 512),
nn.ReLU(),
nn.Dense(512, 10))
return model
二、保存和加载模型权重
save_checkpoint接口保存模型。
参数为神经网络和保存路径:
model = network()
mindspore.save_checkpoint(model, "model.ckpt")
加载模型权重
创建模型实例;
加载模型load_checkpoint;
加载参数load_param_into_net。
model = network()
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)
输出:
[]
param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。
三、保存和加载MindIR
IR(Intermediate Representation)中间表示
MindSpore定义了云侧(训练)和端侧(推理)统一的IR模型格式。
export接口直接将模型保存为MindIR,同时保存了Checkpoint和模型结构。
参数为神经网络、存储张量、保存路径和文件格式。
model = network()
inputs = Tensor(np.ones([1, 1, 28, 28]).astype(np.float32))
mindspore.export(model, inputs, file_name="model", file_format="MINDIR")
load接口加载MindIR模型
nn.GraphCell图模式推理
mindspore.set_context(mode=mindspore.GRAPH_MODE)
graph = mindspore.load("model.mindir")
model = nn.GraphCell(graph)
outputs = model(inputs)
print(outputs.shape)
输出:
(1, 10)