五年级数学上册知识点树
├─ 1. 小数乘法
│ ├─ 小数乘整数
│ │ └─ 【例】3.5×4=14(先算35×4=140,再点小数点)
│ ├─ 小数乘小数
│ │ └─ 【例】2.4×0.6=1.44(24×6=144,三位小数)
│ ├─ 积的近似值
│ │ └─ 【例】8.756≈8.76(保留两位小数)
│ └─ 【*】连乘运算规律(拓展)
│ └─ 【例】2.5×3.2×0.4=2.5×0.4×3.2=3.2
│
├─ 2. 位置与方向
│ ├─ 数对表示位置
│ │ └─ 【例】(3,5)表示第3列第5行
│ ├─ 路线图描述
│ │ └─ 【例】"从(2,1)向东走3格到达(5,1)"
│ └─ 【*】极坐标系初步(拓展)
│ └─ 【例】描述"东偏北30°方向200米"
│
├─ 3. 小数除法
│ ├─ 除数是整数
│ │ └─ 【例】25.5÷5=5.1(商的小数点对齐被除数)
│ ├─ 除数是小数
│ │ └─ 【例】7.65÷0.85=9(被除数和除数同时×100)
│ ├─ 循环小数
│ │ └─ 【例】10÷3=3.333...=3.\dot{3}
│ └─ 【*】商的变化规律应用(拓展)
│ └─ 【例】2.4÷0.3=24÷3=8
│
├─ 4. 简易方程
│ ├─ 用字母表示数
│ │ └─ 【例】a元商品打8折后是0.8a元
│ ├─ 方程的意义
│ │ └─ 【例】x+3=8是方程,5=5不是方程
│ ├─ 解方程
│ │ ├─ 等式性质1
│ │ │ └─ 【例】x-5=12 → x=17
│ │ └─ 等式性质2
│ │ └─ 【例】3x=18 → x=6
│ └─ 【*】复杂方程解法(拓展)
│ └─ 【例】4(x+2)=36 → x+2=9 → x=7
│
├─ 5. 多边形面积
│ ├─ 平行四边形面积
│ │ └─ 【例】底6cm高4cm → 面积=24cm²
│ ├─ 三角形面积
│ │ └─ 【例】底8dm高5dm → 面积=20dm²
│ ├─ 梯形面积
│ │ └─ 【例】上底3m下底5m高2m → 面积=8m²
│ └─ 【*】组合图形面积(拓展)
│ └─ 【例】L型图形分解为长方形+三角形计算
│
├─ 6. 统计与可能性
│ ├─ 可能性量化
│ │ └─ 【例】抛硬币正面朝上概率=1/2
│ ├─ 中位数认识
│ │ └─ 【例】数据组3,5,7,9,11中位数是7
│ └─ 【*】概率实验设计(拓展)
│ └─ 【例】设计转盘使红色区域占1/3
│
├─ 7. 数学广角
│ ├─ 植树问题
│ │ ├─ 两端都种
│ │ │ └─ 【例】100米路每5米种树,需21棵
│ │ └─ 环形植树
│ │ └─ 【例】周长60米花坛每3米种花,需20株
│ └─ 数字编码
│ └─ 【例】身份证倒数第二位表示性别(男单女双)
│
└─ 【奥数】专题
├─ 牛吃草问题
│ └─ 【例】牧场每天草量固定,10头牛吃20天,求草生长速度
├─ 流水行船
│ └─ 【例】船速12km/h,水速3km/h,顺流速度=15km/h
├─ 盈亏问题进阶
│ └─ 【例】分糖每人5颗差3颗,每人4颗余2颗→人数=5
└─ 容斥原理
└─ 【例】40人学英语或法语,英语28人,法语25人→都学的13人
结构说明
- 小数运算:整合各版本对小数乘除法的不同要求,新增连乘运算规律和商的变化规律应用
- 方程模块:保留传统解方程方法,新增复杂方程解法拓展
- 几何领域:强化面积公式推导过程,新增组合图形解题策略
- 统计升级:新增概率实验设计,衔接初中概率学习
- 奥数专题:精选典型应用题如牛吃草、流水行船问题,培养建模能力