【知识树】【数学】(9)五年级上(教材+拓展+奥数)

五年级数学上册知识点树
├─ 1. 小数乘法
│  ├─ 小数乘整数
│  │  └─ 【例】3.5×4=14(先算35×4=140,再点小数点)
│  ├─ 小数乘小数
│  │  └─ 【例】2.4×0.6=1.44(24×6=144,三位小数)
│  ├─ 积的近似值
│  │  └─ 【例】8.756≈8.76(保留两位小数)
│  └─ 【*】连乘运算规律(拓展)
│     └─ 【例】2.5×3.2×0.4=2.5×0.4×3.2=3.2
│
├─ 2. 位置与方向
│  ├─ 数对表示位置
│  │  └─ 【例】(3,5)表示第3列第5行
│  ├─ 路线图描述
│  │  └─ 【例】"从(2,1)向东走3格到达(5,1)"
│  └─ 【*】极坐标系初步(拓展)
│     └─ 【例】描述"东偏北30°方向200米"
│
├─ 3. 小数除法
│  ├─ 除数是整数
│  │  └─ 【例】25.5÷5=5.1(商的小数点对齐被除数)
│  ├─ 除数是小数
│  │  └─ 【例】7.65÷0.85=9(被除数和除数同时×100)
│  ├─ 循环小数
│  │  └─ 【例】10÷3=3.333...=3.\dot{3}
│  └─ 【*】商的变化规律应用(拓展)
│     └─ 【例】2.4÷0.3=24÷3=8
│
├─ 4. 简易方程
│  ├─ 用字母表示数
│  │  └─ 【例】a元商品打8折后是0.8a元
│  ├─ 方程的意义
│  │  └─ 【例】x+3=8是方程,5=5不是方程
│  ├─ 解方程
│  │  ├─ 等式性质1
│  │  │  └─ 【例】x-5=12 → x=17
│  │  └─ 等式性质2
│  │     └─ 【例】3x=18 → x=6
│  └─ 【*】复杂方程解法(拓展)
│     └─ 【例】4(x+2)=36 → x+2=9 → x=7
│
├─ 5. 多边形面积
│  ├─ 平行四边形面积
│  │  └─ 【例】底6cm高4cm → 面积=24cm²
│  ├─ 三角形面积
│  │  └─ 【例】底8dm高5dm → 面积=20dm²
│  ├─ 梯形面积
│  │  └─ 【例】上底3m下底5m高2m → 面积=8m²
│  └─ 【*】组合图形面积(拓展)
│     └─ 【例】L型图形分解为长方形+三角形计算
│
├─ 6. 统计与可能性
│  ├─ 可能性量化
│  │  └─ 【例】抛硬币正面朝上概率=1/2
│  ├─ 中位数认识
│  │  └─ 【例】数据组3,5,7,9,11中位数是7
│  └─ 【*】概率实验设计(拓展)
│     └─ 【例】设计转盘使红色区域占1/3
│
├─ 7. 数学广角
│  ├─ 植树问题
│  │  ├─ 两端都种
│  │  │  └─ 【例】100米路每5米种树,需21棵
│  │  └─ 环形植树
│  │     └─ 【例】周长60米花坛每3米种花,需20株
│  └─ 数字编码
│     └─ 【例】身份证倒数第二位表示性别(男单女双)
│
└─ 【奥数】专题
   ├─ 牛吃草问题
   │  └─ 【例】牧场每天草量固定,10头牛吃20天,求草生长速度
   ├─ 流水行船
   │  └─ 【例】船速12km/h,水速3km/h,顺流速度=15km/h
   ├─ 盈亏问题进阶
   │  └─ 【例】分糖每人5颗差3颗,每人4颗余2颗→人数=5
   └─ 容斥原理
      └─ 【例】40人学英语或法语,英语28人,法语25人→都学的13人

结构说明

  1. 小数运算:整合各版本对小数乘除法的不同要求,新增连乘运算规律和商的变化规律应用
  2. 方程模块:保留传统解方程方法,新增复杂方程解法拓展
  3. 几何领域:强化面积公式推导过程,新增组合图形解题策略
  4. 统计升级:新增概率实验设计,衔接初中概率学习
  5. 奥数专题:精选典型应用题如牛吃草、流水行船问题,培养建模能力
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiyubaby.17

您的鼓励是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值