【知识树】【数学】(12)六年级下(教材+拓展+奥数)

六年级数学下册知识点树
├─ 1. 负数深化
│  ├─ 数轴表示与应用
│  │  └─ 例:在数轴上标出-3.5的位置
│  ├─ 比较大小
│  │  └─ 例:-8 < -5 < 0 < 2
│  └─ 【*】负数四则运算(拓展)
│     └─ 例:(-15) ÷ 3 = -5

├─ 2. 百分数应用
│  ├─ 折扣与成数
│  │  └─ 例:原价200元打八五折 → 200×0.85=170元
│  ├─ 税率与利率
│  │  ├─ 例:月收入8000元(免征额5000)按3%纳税 → 3000×3%=90元
│  │  └─ 例:10000元存3年,年利率2.75% → 利息=10000×3×2.75%=825元
│  └─ 【*】利润与成本(拓展)
│     └─ 例:成本120元,标价180元,利润率=(180-120)/120=50%

├─ 3. 圆柱与圆锥
│  ├─ 圆柱
│  │  ├─ 表面积=侧面积+2×底面积
│  │  │  └─ 例:r=4cm h=10cm → 表面积=2π×4² + 2π×4×10=351.68cm²
│  │  └─ 体积=底面积×高
│  │     └─ 例:r=5dm h=8dm → 体积=π×5²×8=628dm³
│  ├─ 圆锥
│  │  └─ 体积=1/3×等底等高圆柱体积
│  │     └─ 例:与圆柱同底等高,体积=628÷3≈209.33dm³
│  └─ 【*】组合体计算(拓展)
│     └─ 例:圆柱+圆锥粮仓容积计算

├─ 4. 比例专题
│  ├─ 比例基本性质
│  │  └─ 例:3:4=6:8(内项积=外项积)
│  ├─ 解比例方程
│  │  └─ 例:x:15=4:5 → x=12
│  ├─ 正比例与反比例
│  │  ├─ 正比例:y/x=k(一定)
│  │  │  └─ 例:速度一定时,路程与时间成正比
│  │  └─ 反比例:xy=k(一定)
│  │     └─ 例:路程一定时,速度与时间成反比
│  └─ 【*】比例尺应用(拓展)
│     └─ 例:1:50000地图上3cm → 实际距离1.5km

├─ 5. 统计与概率
│  ├─ 扇形统计图分析
│  │  └─ 例:家庭支出占比:食品40%,教育25%,其他35%
│  ├─ 概率计算
│  │  └─ 例:掷骰子得偶数的概率=3/6=1/2
│  └─ 【奥数】条件概率
│     └─ 例:从红球3蓝球2中连续取两球不放回,第二球是红的概率=3/5×2/4 + 2/5×3/4=3/5

├─ 6. 数学广角
│  ├─ 鸽巢原理
│  │  └─ 例:13只鸽子进5个鸽笼 → 至少1个笼有≥3只
│  └─ 逻辑推理
│     └─ 例:甲说"乙在说谎",乙说"丙在说谎",丙说"甲乙都在说谎" → 矛盾分析

└─ 【奥数】专题
   ├─ 经济问题
   │  └─ 例:两件商品各售120元,一件赚20%一件亏20%,总体盈亏=亏10元
   ├─ 浓度问题
   │  └─ 例:20%糖水300g加50g糖 → 新浓度=(60+50)/(300+50)=31.4%
   ├─ 行程问题进阶
   │  └─ 例:环形跑道相向而行,甲速5m/s乙速7m/s,相遇时间=周长÷(5+7)
   ├─ 几何模型
   │  └─ 例:圆中弦长与半径关系 → 弦长=2√(r²-d²)(d为弦心距)
   └─ 数列初步
      └─ 例:2,5,10,17,...通项公式n²+1

结构说明:

  1. 负数深化:新增四则运算拓展,衔接初中代数
  2. 百分数:新增金融场景应用,培养财商意识
  3. 立体几何:强化圆柱圆锥计算,新增组合体问题
  4. 比例体系:新增正反比例实际案例,培养函数思维
  5. 奥数专题
    • 经济问题:建立成本-利润分析模型
    • 浓度问题:混合溶液计算思维
    • 几何模型:圆与弦的几何关系
    • 数列初步:规律探索能力培养

注:本结构整合人教版、北师大版等主流教材内容,拓展部分标注【*】,奥数部分标注【奥数】,例题覆盖典型考试题型与生活应用场景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiyubaby.17

您的鼓励是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值