【知识树】【数学】(15)初二上(教材+拓展+奥数)

八年级数学上册知识点树
├─ 1. 三角形进阶
│  ├─ 与三角形有关的线段
│  │  ├─ 中线定理
│  │  │  └─ 例:△ABC中,AD是中线 ⇒ S△ABD = S△ADC
│  │  └─ 高线性质
│  │     └─ 例:钝角三角形两条高在形外
│  ├─ 多边形内角和
│  │  └─ 例:正十二边形内角和=(12-2)×180°=1800°
│  └─ 【*】星形角度和
│     └─ 例:五角星五个尖角之和=180°

├─ 2. 全等三角形
│  ├─ 判定定理
│  │  ├─ SSS(边边边)
│  │  │  └─ 例:AB=DE, BC=EF, AC=DF ⇒ △ABC≌△DEF
│  │  ├─ SAS(边角边)
│  │  │  └─ 例:AB=DE, ∠B=∠E, BC=EF ⇒ △ABC≌△DEF
│  │  ├─ ASA(角边角)
│  │  │  └─ 例:∠A=∠D, AB=DE, ∠B=∠E ⇒ △ABC≌△DEF
│  │  └─ AAS(角角边)
│  │     └─ 例:∠A=∠D, ∠B=∠E, BC=EF ⇒ △ABC≌△DEF
│  └─ 【奥数】旋转型全等
│     └─ 例:共顶点等边三角形绕顶点旋转60°后全等

├─ 3. 轴对称
│  ├─ 轴对称图形
│  │  └─ 例:正n边形有n条对称轴
│  ├─ 垂直平分线性质
│  │  └─ 例:MN是AB的垂直平分线 ⇒ MA=MB
│  ├─ 最短路径问题
│  │  └─ 例:将军饮马问题用轴对称转化
│  └─ 【*】三次对称图形
│     └─ 例:三叶玫瑰线r=a·sin3θ的对称性分析

├─ 4. 整式乘除与因式分解
│  ├─ 乘法公式
│  │  ├─ 平方差:(a+b)(a-b)=a²-b²
│  │  │  └─ 例:(2x+3)(2x-3)=4x²-9
│  │  ├─ 完全平方:(a±b)²=a²±2ab+b²
│  │  │  └─ 例:(x-5)²=x²-10x+25
│  │  └─ 立方和差:a³±b³=(a±b)(a²∓ab+b²)
│  │     └─ 例:8x³+27=(2x+3)(4x²-6x+9)
│  ├─ 因式分解方法
│  │  ├─ 提公因式法
│  │  │  └─ 例:6x²y-9xy²=3xy(2x-3y)
│  │  ├─ 分组分解法
│  │  │  └─ 例:ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y)
│  │  └─ 十字相乘法
│  │     └─ 例:x²+5x+6=(x+2)(x+3)
│  └─ 【奥数】轮换对称式分解
│     └─ 例:a³(b-c)+b³(c-a)+c³(a-b)的因式分解

├─ 5. 分式
│  ├─ 基本性质
│  │  └─ 例:分式(x²-4)/(x+2)化简为x-2(x≠-2)
│  ├─ 分式运算
│  │  ├─ 加减法:通分后运算
│  │  │  └─ 例:1/(x+1) + 2/(x-1) = (3x+1)/(x²-1)
│  │  ├─ 乘除法:约分运算
│  │  │  └─ 例:(x²-9)/(x+3) ÷ (x-3)/2 = 2(x+3)/(x-3)
│  │  └─ 混合运算顺序
│  │     └─ 例:[1/(x-1) - 1/(x+1)] × (x²-1) = 2
│  └─ 【*】分式方程应用
│     └─ 例:工程问题:甲队单独完成需x天,乙队需x+5天,合作需6天 ⇒ 1/x + 1/(x+5) = 1/6

├─ 6. 二次根式
│  ├─ 双重非负性
│  │  └─ 例:√(a-3)有意义 ⇒ a≥3
│  ├─ 运算规则
│  │  ├─ 乘法:√a×√b=√(ab)
│  │  │  └─ 例:√12×√3=√36=6
│  │  └─ 除法:√a÷√b=√(a/b)
│  │     └─ 例:√18÷√2=√9=3
│  └─ 【奥数】复合二次根式
│     └─ 例:√(5+2√6)=√2+√3

└─ 【奥数】专题
   ├─ 几何变换
   │  ├─ 翻折构造
   │  │  └─ 例:将△ABC沿中线AD翻折构造全等形
   │  └─ 旋转变换
   │     └─ 例:构造60°旋转证明三点共线
   ├─ 数论初步
   │  ├─ 完全平方数性质
   │  │  └─ 例:证明形如4k+3的数不能表示为两平方数之和
   │  └─ 同余应用
   │     └─ 例:求3²⁰²³的个位数字(周期律:3⁴≡1 mod10 ⇒ 个位3)
   ├─ 组合计数
   │  └─ 例:10人排队甲乙不相邻的排列数=8!×2×9
   └─ 函数思想
      └─ 例:分式f(x)=1/(x²-4)的自变量取值范围x≠±2

结构说明:

  1. 几何深化:新增旋转型全等与三次对称图形分析
  2. 代数突破:覆盖因式分解高阶技巧,新增轮换对称式分解
  3. 分式体系:强化实际应用题建模能力
  4. 二次根式:引入复合根式化简技巧
  5. 奥数专题
    • 几何构造:培养辅助线添加能力
    • 数论基础:建立模运算思维
    • 组合计数:训练排列组合技巧
    • 函数思想:衔接高中函数概念

注:本结构整合人教版、华师大版、浙教版等版本核心内容,拓展部分标注【*】,奥数部分标注【奥数】,例题覆盖中考压轴题型与竞赛基础题,重要公式推导过程需配合图示说明。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiyubaby.17

您的鼓励是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值