自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(53)
  • 收藏
  • 关注

原创 Datawhale AI夏令营

模型微调。

2025-07-24 13:45:42 94

原创 day50

【代码】day50。

2025-07-04 09:01:36 334

原创 day49

【代码】day49。

2025-07-03 09:12:57 122

原创 day48

··

2025-07-02 09:24:30 597

原创 day47

【代码】day47。

2025-07-01 09:04:55 155

原创 day46

【代码】day45。

2025-06-30 09:08:32 110

原创 day 45

【代码】day 45。

2025-06-29 00:07:45 194

原创 day44

【代码】day44。

2025-06-28 22:38:24 183

原创 day43

【代码】day43。

2025-06-27 09:09:10 117

原创 day42

【代码】day42。

2025-06-26 09:37:06 119

原创 day41

··

2025-06-25 09:12:50 322

原创 day 40

【代码】day 40。

2025-06-24 08:52:11 148

原创 day 39

【代码】day 39。

2025-06-23 08:55:42 201

原创 day38

【代码】day38。

2025-06-21 14:16:08 249

原创 day37

早停。

2025-06-20 09:38:09 338

原创 day 36

复习日。

2025-06-19 09:28:26 382

原创 day 35

一、模型结构可视化理解一个深度学习网络最重要的2点:了解损失如何定义的,知道损失从何而来----把抽象的任务通过损失函数量化出来了解参数总量,即知道每一层的设计才能退出—层设计决定参数总量为了了解参数总量,我们需要知道层设计,以及每一层参数的数量。下面介绍1几个层可视化工具:1.1 nn.model自带的方法。

2025-06-18 09:02:55 164

原创 day34

数据传输开销 (CPU 内存 <-> GPU 显存)在 GPU 进行任何计算之前,数据(输入张量 X_train、y_train,模型参数)需要从计算机的主内存 (RAM) 复制到 GPU 专用的显存 (VRAM) 中。当结果传回 CPU 时(例如,使用 loss.item() 获取损失值用于打印或记录,或者获取最终预测结果),数据也需要从 GPU 显存复制回 CPU 内存。对于少量数据和非常快速的计算任务,这个传输时间可能比 GPU 通过并行计算节省下来的时间还要长。

2025-06-17 09:19:00 509

原创 day33

self.fc1 = nn.Linear(4, 10) # 输入层到隐藏层self.fc2 = nn.Linear(10, 3) # 隐藏层到输出层。

2025-06-16 09:46:23 323

原创 day 32

我们已经掌握了相当多的机器学习和python基础知识,现在面对一个全新的官方库,看看是否可以借助官方文档的写法了解其如何使用。我们以pdpbox这个机器学习解释性库来介绍如何使用官方文档。大多数 Python 库都会有官方文档,里面包含了函数的详细说明、用法示例以及版本兼容性信息。通常查询方式包含以下2种:GitHub 仓库:https://github.com/SauceCat/PDPboxPyPI 页面:https://pypi.org/project/PDPbox/

2025-06-15 23:19:04 465

原创 day31

信用违约预测模型这个项目实现了一个信用违约预测模型,使用随机森林算法对客户是否会发生信用违约进行预测。项目结构│├── data/ # 数据文件夹│ ├── raw/ # 原始数据│ └── processed/ # 处理后的数据│├── src/ # 源代码│ ├──.py。

2025-06-14 17:39:02 366

原创 day30

【代码】day30。

2025-06-13 08:59:50 117

原创 day29

【代码】【无标题】

2025-06-12 09:01:30 371

原创 day28

【代码】day28。

2025-06-11 09:01:41 244

原创 day27

【代码】day27。

2025-06-10 08:58:00 234

原创 day26

变量作用域理解变量在何处可见和可访问非常重要。局部变量 (Local Variables): 在函数内部定义的变量,只在该函数内部有效。当函数执行完毕后,局部变量通常会被销毁。全局变量 (Global Variables): 在所有函数外部定义的变量,可以在程序的任何地方被访问(但在函数内部修改全局变量需要特殊声明,如 global 关键字,初学阶段可以先避免)。print(“\n— 变量作用域示例 —”)global_var = “我是一个全局变量”

2025-06-09 08:59:51 936

原创 day25

1.异常处理机制2.debug过程中的各类报错3.try-except机制4.try-except-else-finally机制。

2025-06-08 19:13:46 888

原创 day24元组和OS模块

元组元组的特点:有序,可以重复,这一点和列表一样元组中的元素不能修改,这一点非常重要,深度学习场景中很多参数、形状定义好了确保后续不能被修改。很多流行的 ML/DL 库(如 TensorFlow, PyTorch, NumPy)在其 API 中都广泛使用了元组来表示形状、配置等。可以看到,元组最重要的功能是在列表之上,增加了不可修改这个需求元组的创建my_tuple3 = (1, ‘hello’, 3.14, [4, 5]) # 可以包含不同类型的元素(1, 2, 3)

2025-06-07 17:48:47 829

原创 day23

转换器(transformer)转换器(transformer)是一个用于对数据进行预处理和特征提取的 estimator,它实现一个 transform 方法,用于对数据进行预处理和特征提取。转换器通常用于对数据进行预处理,例如对数据进行归一化、标准化、缺失值填充等。转换器也可以用于对数据进行特征提取,例如对数据进行特征选择、特征组合等。转换器的特点是无状态的,即它们不会存储任何关于数据的状态信息(指的是不存储内参)。转换器仅根据输入数据学习转换规则(比如函数规律、外参),并将其应用于新的数据。

2025-06-06 08:45:29 321

原创 day 22

本项目通过对泰坦尼克号乘客数据的分析和建模,实现了对乘客生存情况的预测。数据清洗与预处理:处理了缺失值,转换了数据类型。特征工程:创建了如TitleFamilySizeIsAloneAge*Pclass等新特征,并对部分特征进行了分箱和数值化处理。数据可视化:通过图表分析了各特征与生存率的关系。模型训练与评估:尝试了逻辑回归、决策树和随机森林模型,并比较了它们在训练集上的准确率。Sex(女性生存率更高) 和Pclass(高等级船舱生存率更高) 是非常重要的预测特征。Title。

2025-06-05 09:19:27 719

原创 day 21

常见的降维算法。

2025-06-04 09:06:07 130

原创 day20 奇异值分解

【代码】day20 奇异值分解。

2025-06-03 09:18:01 382

原创 day19

方差筛选皮尔逊相关系数筛选lasso筛选树模型重要性shap重要性。

2025-06-02 22:22:33 218

原创 day18

推断簇含义的2个思路:先选特征和后选特征通过可视化图形借助ai定义簇的含义科研逻辑闭环:通过精度判断特征工程价值。

2025-06-01 23:26:53 711

原创 day-17

聚类的指标聚类常见算法:kmeans聚类、dbscan聚类、层次聚类三种算法对应的流程。

2025-05-31 22:45:37 160

原创 day 16

直观判断: 数组的维度层数通常可以通过打印输出时中括号 [] 的嵌套层数来初步确定:一层 []: 一维 (1D) 数组。两层 []: 二维 (2D) 数组。三层 []: 三维 (3D) 数组,依此类推。2. NumPy 数组与深度学习 Tensor 的关系在后续进行频繁的数学运算时,尤其是在深度学习领域,对 NumPy 数组的理解非常有帮助,因为 PyTorch 或 TensorFlow 中的 Tensor 张量本质上可以视为支持 GPU 加速和自动微分的 NumPy 数组。

2025-05-30 09:47:05 272

原创 day 15

kaggle@浙大疏锦行

2025-05-29 10:57:06 138

原创 day_14

shap可解释性分析。

2025-05-28 09:35:01 427

原创 day13

不平衡数据处理。

2025-05-27 09:43:23 417

原创 day_12

下面介绍这几种常见的优化算法遗传算法粒子群优化模拟退火。

2025-05-26 09:12:54 204

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除