Ingonyama团队的ZKP加速

1. PipeMSM(cloud-ZK):ZKP+FPGA

Ingonyama团队2022年发表了论文《PipeMSM: Hardware Acceleration for Multi-Scalar Multiplication》,尝试将ZK操作与FPGA结合,并为未来ZK与ASIC(Application Specific Integrated Circuits)结合做铺垫。

在Aztec系列博客:

中指出,prover开销 相对于 “direct witness checking” 将是百万级甚至千万级的。Prover开销被认为是影响ZK应用的主要计算瓶颈,从而影响:

  • 延迟
  • 吞吐量
  • 内存
  • 耗电量
  • cost

MSM(Multi-scalar multiplication)为许多ZK prover的主要瓶颈,在PipeMSM论文中,借助:

所实现的MSM算法,具有能耗效率高且速度可媲美GPU的优势。
在这里插入图片描述
开源代码实现见:

FPGA与GPU相比的劣势在于,GPU为商品化硬件,用户更易于获得。

第一届ZPrize FPGA MSM track winner Hardcaml的性能为:
在这里插入图片描述
而实际所实现的PipeMSM的性能要更优。

在这里插入图片描述
在这里插入图片描述

2. ICICLE:ZKP+GPU

开源代码见:

ICICLE为基于CUDA的GPU库,支持:

  • Aleo等应用中的ZK加速。
  • Fast Danksharding应用:为以太坊rollup扩容路线图的sharding设计。引入新的名为blob-data的数据类型。blob-data由共识层(beacon链)存储有限的一段时间,不可被执行层(EVM)访问,但blob-data的内容和可用性 可由 执行层(EVM)验证。Danksharding引入builder新角色。builder给proposers提供block proposals,proposers负责根据highest bid来选择block。仅被选中的block builder需要构建整个区块。一旦选中的区块发布,可通过data availability sampling高效验证。详细参看论文:A Mathematical Theory of Danksharding
    核心设计思想为:
    在这里插入图片描述
    开源代码实现见:

参考资料

[1] Ingonyama团队2022年9月博客 Cloud-ZK: A Toolkit for Developing ZKP Acceleration in the Cloud
[2] https://zprize.hardcaml.com/msm-results.html
[3] Ingonyama团队2023年4月博客 ZK Hardware Table Stakes part 1 -MSM
[4] Ingonyama团队2023年3月博客 Introducing ICICLE: An Open-Source GPU Library for Zero Knowledge Acceleration
[5] Ingonyama团队2023年3月博客 Fast Danksharding using ICICLE
[6] Ingonyama团队博客A Mathematical Theory of Danksharding

ZKP加速系列博客

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含多种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地和草原环境中的鹿群及个体样本。 - Fox(狐):涵盖多种狐狸品种的多样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等多角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析与栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 多物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景多样性: 数据采集涵盖丛林、草原、山地等多种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位与分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值