1. 引言
曾被顶尖密码专家视为不可能实现的全同态加密终于问世。它是加密领域的独角兽技术,可实现对加密数据的任意计算,从而开启机密计算的新时代。
FHENIX定位为端到端的加密Web3:
- 可编程
- 可扩展
- 加密
多年来,密码学研究人员一直在努力解决这样一个问题:虽然数据可以在传输过程中加密,但实际的数据处理需要先解密数据。这些额外的步骤带来了数据漏洞,并导致了影响数亿人的重大数据泄露。详情可参看2023年7月14日博客10 of the Biggest Data Breaches in History。
来自顶尖学术密码学家的开创性研究,以及计算能力的进步,终于带来了全同态加密:对加密数据进行安全操作的能力。
在本文中,将介绍:
- 何为FHE?
- FHE工作原理
- FHE用途
2. 何为FHE?
1978 年,研究人员首次研究了修改计算机硬件以对加密数据执行安全操作的问题。详情见onald L. Rivest、Len Adleman 和 Michael L. Dertouzos 1978年论文《On Data Banks and Privacy Homomorphisms》。在接下来的 30 年里,这一问题几乎没有取得任何进展,主要是因为这种复杂计算所需的计算能力不足。
2009 年, Craig Gentry提出了一种可能的 FHE 方案,从而恢复了进展。详情见2009年论文《A fully homomorphic encryption scheme》。
与此同时,计算能力的显著提升推动了人工智能的早期发展。此后取得了进一步的进展,包括 2013 年的一篇开创性的研究论文,该论文避开了 FHE 计算成本高昂的重线性化步骤。详情见 Craig Gentry、Amit Sahai 和 Brent Waters 2013年论文《Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based》。
终于,被称为“全同态加密”的“曾经神话般的”技术问世了,使得能够进行机密计算。从本质上讲,机密计算引入了一种全新的数据保护和执行安全计算的范式。
Fully Homomorphic Encryption全同态加密到底是什么意思呢?其中每个术语的含义为:
- Fully 完全:在 FHE 的上下文中,完全意味着支持任意运算,如加法和乘法。
- Homomorphic 同态:无需先解密即可对加密数据进行计算的能力。
- Encryption 加密:将信息转换为防止未经授权访问的代码的过程。
总而言之,FHE 指的是无需解密数据即可对加密数据执行二进制运算的能力。
binary二元运算是指采用两个输入并产生单个输出的数学运算,如加法、乘法、减法和除法。区块链的核心主要处理整数运算,这意味着这对整个行业来说具有巨大的价值。
3. FHE 对区块链的意义
当前现状是,数据需要先解密才能进行计算。然后必须再次加密,然后再解密,每一步都为数据被利用提供了新的机会。
这导致几乎每个行业都遭受重大数据泄露,影响了数亿人,其中包括Equifax、Marriot International、EasyJet等众多大型企业。每次敏感数据泄露的修复成本高达数十亿美元,数百万人的个人数据因此被泄露。FHE 计算加密数据的能力对几乎每个行业都有深远影响,并将成为数据安全的新标准。
3.1 FHE 如何集成到区块链中?
虽然未来的内容将在技术层面涵盖 FHE,但在这里将简单概述 FHE 如何集成到区块链中。FHE 的影响深远,不仅限于区块链行业——不过本文重点关注FHE+区块链应用。
如上所述,区块链主要处理整数运算,如管理智能合约“状态”、更新区块索引或处理加密货币交易。这意味着将 FHE 应用于加密的区块链数据非常强大。
不过,FHE 是一个小众且非常复杂的领域,因此进入门槛很高。这就是Fhenix与构建fhEVM的 Zama 合作的原因。
- fhEVM 是一组以太坊虚拟机 (EVM) 的扩展,允许任何 Solidity 开发人员将 FHE 集成到他们的工作流程中。这使得无需任何 Solidity 专业知识即可创建加密智能合约,这意味着开发人员可以从 Solidity 广泛的开发人员工具套件中受益。
- fhEVM 用于编写应用程序本身,但Fhenix也有fhenix.js,它允许开发人员使用 Javascript 创建前端。
4. FHE vs. ZK
零知识(ZK)技术近来被广泛报道,经常被誉为区块链隐私的未来。
需要注意的是,ZK与 FHE 有一些区别:
- 加密计算: ZK 无法在不牺牲安全性的情况下计算来自多个用户的加密数据(对于私有 ERC-20 代币而言就是这种情况)。FHE 可以做到这一点,这使得FHE在整个区块链中更具可组合性。ZK 技术通常需要为新网络和资产进行自定义集成。
- 可扩展性:至少目前来看,ZK 被认为比 FHE 更具可扩展性。未来几年,技术发展将扩大 FHE 的可扩展性。
- 复杂计算: FHE 可以处理加密数据的复杂计算,适合机器学习、安全 MPC 和完全隐私计算等需求。相比之下,ZK 证明通常用于更简单的任务,如在不透露值的情况下证明值。
- 普遍适用性:虽然 ZK 证明非常适合身份验证、认证和可扩展性等特定用例,但 FHE 可以应用于更广泛的应用程序。这包括机密数据处理、安全云计算和隐私保护 AI 应用程序。
目前认为两者在区块链中都有一席之地。然而,尽管目前 ZK 技术比 FHE 更成熟,但相信 FHE 最终会成为最合适的隐私保护解决方案。
5. 结论
FHE 代表了机密计算领域的突破。
数据不再需要解密才能进行计算——现在可以在整个过程中保持加密,大大减少了攻击媒介的数量。这也意味着许多机构区块链用例现在都是可行的,因为数据隐私是它们的关键考虑因素。
参考资料
[1] Fhenix团队2023年10月17日博客 The Holy Grail of Encryption: The Rise of FHE Technology