1. 引言
The non-adjacent form (NAF) of a number is a unique signed-digit representation. Like the name suggests, non-zero values cannot be adjacent. For example:
(
0
1
1
1
)
2
=
4
+
2
+
1
=
7
(0\ 1\ 1\ 1)_2 = 4 + 2 + 1 = 7
(0 1 1 1)2=4+2+1=7
(
1
0
−
1
1
)
2
=
8
−
2
+
1
=
7
(1\ 0\ −1\ 1)_2 = 8 − 2 + 1 = 7
(1 0 −1 1)2=8−2+1=7
(
1
−
1
1
1
)
2
=
8
−
4
+
2
+
1
=
7
(1\ −1\ 1\ 1)_2 = 8 − 4 + 2 + 1 = 7
(1 −1 1 1)2=8−4+2+1=7
(
1
0
0
−
1
)
2
=
8
−
1
=
7
(1\ 0\ 0\ −1)_2 = 8 − 1 = 7
(1 0 0 −1)2=8−1=7
All are valid signed-digit representations of 7, but only the final representation, ( 1 0 0 − 1 ) 2 (1\ 0\ 0\ −1)_2 (1 0 0 −1)2, is in NAF.
NAF即以一组有符号数字表示,且非零值不可相邻(即每个非零值的左右相邻位必须均为0)。NAF表示的数字,可保证Hamming weight值最小,且相比于普通的二进制表示,其非零值比率可控制在1/3以内。
2. NAF的优势
因以NAF表示的数字相比于以二进制形式表示的数字,其非零值的个数有效减少了(由1/2减为1/3)。非零值个数的减少,将提高某些算法的效率。比如密码学中应用中,可减少exponentiation幂算法中的乘法运算数量(该数量取决于非零值的位数)。
exponentiation幂运算通常表示由基数
b
b
b和指数
n
组
成
n组成
n组成:
b
n
=
b
×
b
.
.
.
×
b
b^n=b\times b...\times b
bn=b×b...×b
NAF中的1
即表示与基数
b
b
b的一次乘积运算,-1
表示与基数的倒数
1
b
\frac{1}{b}
b1的乘法运算。
3. 转NAF算法
将普通二进制数字表示转换为NAF表示的算法如下:
Input E = (em − 1 em − 2 ··· e1 e0)2
Output Z = (zm zm − 1 ··· z1 z0)NAF
i ← 0
while E > 0 do
if E is odd then
zi ← 2 − (E mod 4)
E ← E − zi
else
zi ← 0
E ← E/2
i ← i + 1
return z
特别的,对于以
w
w
w进制表示的NAF,通称为width-w NAF。具体定义见 书《Guide to Elliptic Curve Cryptography》中Definition 3.32:
具体的算法实现为:
上面算法中2.1步骤中的
k
m
o
d
s
2
w
k\ mods\ 2^w
k mods 2w,对应的结果区间在
[
−
2
w
−
1
,
2
w
−
1
−
1
]
[-2^{w-1}, 2^{w-1}-1]
[−2w−1,2w−1−1]。
举例为,下面例子中上面有横杠的数字表示的即为负数:
观察可发现:
w
w
w值越大,NAF中非零值的个数越少。
3. curve25519-dalek中scalar的NAF
以NAF形式表示的位数最多比以二进制形式表示的位数多一位。因此,需保证scalar以二进制表示时,其最高位保持为0值,而相应的NAF表示时,最多只有256位。
针对算法:
上面算法中2.1步骤中的
k
m
o
d
s
2
w
k\ mods\ 2^w
k mods 2w相当于求
u
u
u,使得
u
≡
k
(
m
o
d
2
w
)
u\equiv k(mod\ 2^w)
u≡k(mod 2w),
u
u
u对应的结果区间在
[
−
2
w
−
1
,
2
w
−
1
)
[-2^{w-1}, 2^{w-1})
[−2w−1,2w−1)。
在curve25519-dalek的实际代码实现中,具体的思路为已知
k
=
(
k
m
k
m
−
1
.
.
.
k
w
+
1
k
w
k
w
−
1
.
.
.
k
1
k
0
)
2
k=(k_mk_{m-1}...k_{w+1}k_wk_{w-1}...k_1k_0)_2
k=(kmkm−1...kw+1kwkw−1...k1k0)2,求相应的
N
A
F
w
(
k
)
=
(
n
m
.
.
.
.
n
1
n
0
)
w
NAF_w(k)=(n_m....n_1n_0)_w
NAFw(k)=(nm....n1n0)w:
1)将k以二进制表示为
k
=
(
k
m
k
m
−
1
.
.
.
k
w
+
1
k
w
k
w
−
1
.
.
.
k
1
k
0
)
2
=
∑
i
=
0
w
−
1
k
i
2
i
+
2
w
∗
∑
i
=
0
k
i
+
w
2
i
k=(k_mk_{m-1}...k_{w+1}k_wk_{w-1}...k_1k_0)_2=\sum_{i=0}^{w-1}k_i2^i+2^w*\sum_{i=0}k_{i+w}2^i
k=(kmkm−1...kw+1kwkw−1...k1k0)2=∑i=0w−1ki2i+2w∗∑i=0ki+w2i,其中
∑
i
=
0
w
−
1
k
i
2
i
≡
k
m
o
d
2
w
\sum_{i=0}^{w-1}k_i2^i\equiv k\ mod\ 2^w
∑i=0w−1ki2i≡k mod 2w。
2)若
k
m
o
d
2
w
k\ mod\ 2^w
k mod 2w为奇数,且
k
m
o
d
2
w
<
2
w
−
1
k\ mod\ 2^w < 2^{w-1}
k mod 2w<2w−1时,
n
0
=
k
m
o
d
2
w
n_0=k\ mod\ 2^w
n0=k mod 2w,对于其中的
k
=
k
−
n
0
k=k-n_0
k=k−n0计算,其实即为
k
=
k
>
>
w
k=k>>w
k=k>>w。
3)若
k
m
o
d
2
w
k\ mod\ 2^w
k mod 2w为奇数,且
k
m
o
d
2
w
≥
2
w
−
1
k\ mod\ 2^w \ge 2^{w-1}
k mod 2w≥2w−1时,
n
0
=
k
m
o
d
2
w
−
2
w
n_0=k\ mod\ 2^w-2^w
n0=k mod 2w−2w,对于其中的
k
=
k
−
n
0
k=k-n_0
k=k−n0计算,其实即为
k
=
k
−
n
0
=
∑
i
=
0
w
−
1
k
i
2
i
+
2
w
∗
∑
i
=
0
k
i
+
2
2
i
−
(
k
m
o
d
2
w
−
2
w
)
≡
k
m
o
d
2
w
+
2
w
∗
∑
i
=
0
k
i
+
w
2
i
−
(
k
m
o
d
2
w
−
2
w
)
≡
2
w
+
2
w
∗
∑
i
=
0
k
i
+
w
2
i
k=k-n_0=\sum_{i=0}^{w-1}k_i2^i+2^w*\sum_{i=0}k_{i+2}2^i-(k\ mod\ 2^w-2^w)\equiv k\ mod\ 2^w+2^w*\sum_{i=0}k_{i+w}2^i-(k\ mod\ 2^w-2^w)\equiv 2^w+2^w*\sum_{i=0}k_{i+w}2^i
k=k−n0=∑i=0w−1ki2i+2w∗∑i=0ki+22i−(k mod 2w−2w)≡k mod 2w+2w∗∑i=0ki+w2i−(k mod 2w−2w)≡2w+2w∗∑i=0ki+w2i,最终可有
k
=
k
>
>
w
,
c
a
r
r
y
=
1
k=k>>w, carry=1
k=k>>w,carry=1。
4)若
k
m
o
d
2
w
k\ mod\ 2^w
k mod 2w为偶数,则有
n
0
=
0
n_0=0
n0=0,
k
=
k
>
>
1
k=k>>1
k=k>>1。
具体代码实现为:
pub(crate) fn non_adjacent_form(&self, w: usize) -> [i8; 256] {
// required by the NAF definition
debug_assert!( w >= 2 );
// required so that the NAF digits fit in i8
debug_assert!( w <= 8 );
use byteorder::{ByteOrder, LittleEndian};
let mut naf = [0i8; 256];
let mut x_u64 = [0u64; 5];
LittleEndian::read_u64_into(&self.bytes, &mut x_u64[0..4]);
let width = 1 << w;
let window_mask = width - 1;
let mut pos = 0;
let mut carry = 0;
while pos < 256 {
// Construct a buffer of bits of the scalar, starting at bit `pos`
let u64_idx = pos / 64;
let bit_idx = pos % 64;
let bit_buf: u64;
if bit_idx < 64 - w {
// This window's bits are contained in a single u64
bit_buf = x_u64[u64_idx] >> bit_idx;
} else {
// Combine the current u64's bits with the bits from the next u64
bit_buf = (x_u64[u64_idx] >> bit_idx) | (x_u64[1+u64_idx] << (64 - bit_idx));
}
// Add the carry into the current window
let window = carry + (bit_buf & window_mask);
if window & 1 == 0 {
// If the window value is even, preserve the carry and continue.
// Why is the carry preserved?
// If carry == 0 and window & 1 == 0, then the next carry should be 0
// If carry == 1 and window & 1 == 0, then bit_buf & 1 == 1 so the next carry should be 1
pos += 1;
continue;
}
if window < width/2 {
carry = 0;
naf[pos] = window as i8;
} else {
carry = 1;
naf[pos] = (window as i8).wrapping_sub(width as i8);
}
pos += w;
}
naf
}
参考资料:
[1] https://en.wikipedia.org/wiki/Non-adjacent_form
[2] 《Guide to Elliptic Curve Cryptography》