【图论】树剖(上):重链剖分

一、前置知识清单

  1. 深度优先搜索DFS 点我复习
  2. 图的存储 复习链接敬请期待
  3. 树状数组 点我复习

二、树剖简介

树剖(树链剖分),是一种把树划分成链的算法,该算法分为重链剖分和长链剖分。
本文仅讨论重链剖分,长链剖分目前本人还不会,所以不予展示。

三、模拟重链剖分

图6是一棵树,我们钦定1号结点为根。
图6
图6

若要对这棵树进行重链剖分,首先要求出它的DFN序。注意这里的DFN序与DFS序还是有一定区别的。 DFN序就是优先遍历每个结点重儿子的DFS序。
以上面的图6为例,我们先求出以每个结点为根的子树重量 s i z i siz_i sizi(即以每个结点为根的子树所包含的结点个数)。该树中 s i z i siz_i sizi 分别等于 5 5 5 2 2 2 1 1 1 4 4 4 1 1 1
对于每个非叶子结点,找到其 s i z i siz_i sizi 最大的儿子(即重儿子),记为 s o n i son_i soni。若有多个儿子的 s i z i siz_i sizi 相等,则 s o n i son_i soni 取任意一个儿子均可。该树中 s o n i son_i soni 分别等于 4 4 4 3 3 3 0 0 0 2 2 2 0 0 0
我们将每个重儿子和它的父亲连接,形成一条条重链。该树中有两条重链: 1 1 1 4 4 4 2 2 2 3 3 3 为一条重链, 5 5 5 自成一条重链。

四、代码实现重链剖分

感谢@xixisuper_提供树剖代码。由于本人一顿操作,代码变得又长又唐,请见谅。

#include<bits/stdc++.h>
using namespace std;
vector<int>e[114514];
int fa[114514],dep[114514],siz[114514],son[114514];
//fa[i]存储每个非根节点的父亲,dep[i]存储每个结点的深度 
void dfs(int u,int father){
	int lz;
	fa[u]=father;
	dep[u]=dep[father]+1;
	siz[u]=1;
	lz=e[u].size();
	for(int i=0;i<lz;i++){
		if(e[u][i]==father)continue;//避免回搜 
		dfs(e[u][i],u);//本人的十手笔记本电脑写了auto会编译错误 
		siz[u]+=siz[e[u][i]];
		if(siz[son[u]]<siz[e[u][i]]) son[u]=e[u][i];
	}
}//找重儿子 
int dfn[114514],nidfn[114514],top[114514],tot;
//dfn[i]存储DFN序(点到下标),nidfn[i]存储逆DFN序(下标到点),你只需要知道这两个东西很有用就行了 
//top[i]存储链顶 
void pf(int u,int father){
	int lz; 
	dfn[u]=++tot; 
	nidfn[tot]=u;
	if(son[u]){
		top[son[u]]=top[u];
		pf(son[u],u);//先遍历重儿子 
	}
	lz=e[u].size();
	for(int i=0;i<lz;i++){
		if(e[u][i]==father)continue;//避免回搜 
		if(e[u][i]==son[u])continue;//重儿子已经遍历过了 
		top[e[u][i]]=e[u][i];
		pf(e[u][i],u);
	}
}//剖分,求DFN序 
int lowbit(int x){
	return x&(-x);
}
struct st{
	//使用树状数组维护区间和 
	int c[114514];
	void add(int x,int y){
		for(int i=x;i<=y;i+=lowbit(i))c[i]+=y;//单点修改 
		return;
	}
	void add(int x,int y,int z){
		for(int i=x;i<=y;i++)add(i,z);//这里的区间修改貌似有点怪怪的,有什么可以优化的地方请私信我,备注142719158
		return; 
	}
	int query(int x){
		int r=0;//前缀查询
		for(int i=x;i;i-=lowbit(i))r+=c[i];
		return r;
	}
	int query(int x,int y){
		return query(y)-query(x-1);//区间查询 
	}
}tr;
void update(int x,int y,int z){
	//将x与y之间唯一路径上的点点权加上z
	while(top[x]!=top[y]){
		if(dep[top[x]]>dep[top[y]]){
			tr.add(dfn[top[x]],dfn[x],z);//当两个结点不在同一条链上时,深度更大的结点向上跳 
			x=fa[top[x]];//向上跳到链顶的父亲 
		}
		else{
			tr.add(dfn[top[y]],dfn[y],z);
			y=fa[top[y]];//向上跳到链顶的父亲 
		}
	}
	if(dep[x]>dep[y])tr.add(dfn[y],dfn[x],z);
	else tr.add(dfn[x],dfn[y],z);
	return; 
}
int qry(int x,int y){
	//查询x与y之间唯一路径上的点点权之和 
	int r=0; 
	while(top[x]!=top[y]){
		if(dep[top[x]]>dep[top[y]]){
			r+=tr.query(dfn[top[x]],dfn[x]);//当两个结点不在同一条链上时,深度更大的结点向上跳 
			x=fa[top[x]];//向上跳到链顶的父亲 
		}
		else{
			r+=tr.query(dfn[top[y]],dfn[y]);
			y=fa[top[y]];//向上跳到链顶的父亲 
		}
	}
	if(dep[x]>dep[y])r+=tr.query(dfn[y],dfn[x]);
	else r+=tr.query(dfn[x],dfn[y]);
	return r;
}
int main(){
	dfs(1,0);
	top[1]=1;
	pf(1,0);
	return 0;
}

如果博客有错误,或者发现了代码中的问题,请联系我,备注142719158,我会尽快修正!鲁A济南车!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值