来自知乎的截图 加入的流形正则化项可以这样理解:从它的假设已知样本相似的数据则对于的标签也有相似性(两个样本在流形中距离相近,那么他们的label也应该一样或相似。)。那么最后一个公式就保证训练的f满足这种关系(样本的分布函数),而不仅仅是保证很高的分类能力。无监督学习就是学习样本的分布,监督学习是寻找一个最优的分界面,流形正则化则是减弱监督学习的使之带有无监督学习的优点。
流形正则化公式的理解
最新推荐文章于 2024-04-06 12:56:17 发布
来自知乎的截图 加入的流形正则化项可以这样理解:从它的假设已知样本相似的数据则对于的标签也有相似性(两个样本在流形中距离相近,那么他们的label也应该一样或相似。)。那么最后一个公式就保证训练的f满足这种关系(样本的分布函数),而不仅仅是保证很高的分类能力。无监督学习就是学习样本的分布,监督学习是寻找一个最优的分界面,流形正则化则是减弱监督学习的使之带有无监督学习的优点。