A Programmer's Guide to DM
文章平均质量分 77
Dr_Hm
数据挖掘
展开
-
Weighted Slope One (python实现)
chapter 3 (collabative filtering ) of 《guide to db》slope one 算法比较简单:1.先构造 collection of deviation(average deviation) 2.weighted slope one ,已经打分的项+该项的原创 2013-08-14 15:57:57 · 1201 阅读 · 0 评论 -
Pearson+Cosine Similarity+K-Nearest Neighbor 代码
这本书比较简单,适合做推荐系统入门级读物。作者写的很仔细,一些复杂的公式都拆开讲。这是他的网站:http://guidetodatamining.com/一、通过用户的相似度(最相似用户)进行推荐。主要有三种方式:1.距离 2.pearson 3.cosine原理就不说了,书中都有,很简单。主要贴下代码: 1 recommend by distancefrom原创 2013-08-12 15:24:59 · 1186 阅读 · 0 评论 -
最简单的分类器(nearest neighbor )
原理:先计算出与物品最近的物品(用manhattan距离),然后以最相似物品的评分来估计现在的。users = {"Angelica": {"Dr Dog/Fate": "L", "Phoenix/Lisztomania": "L", "Heartless Bastards/Out at Sea": "D",原创 2013-08-15 09:24:17 · 992 阅读 · 0 评论 -
稍微复杂的分类器(加入了Normalization)
class Classifier: def __init__(self, filename): self.data = [] self.getData(filename) self.dimension = 2 self.medians = [] self.asds = [] self.norma原创 2013-08-15 15:49:11 · 628 阅读 · 0 评论