day43 第九章 动态规划part10

300.最长递增子序列

dp表示以nums[i]结尾的最长递增子序列的长度

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        # initialization
        dp = [1]*len(nums) # dp表示以nums[i]为结尾的最长递增子序列的长度

        dp[0] = 1

        for i in range(1, len(nums)):
            for j in range(0, i):
                if nums[i] > nums[j]:
                    dp[i] = max(dp[j]+1, dp[i])

        result = max(dp)

        return result

674. 最长连续递增序列

dp[i]表示以nums[i]为结尾的最长连续递增子序列的长度,配合最后result=max(dp)

class Solution:
    def findLengthOfLCIS(self, nums: List[int]) -> int:
        # initialization
        dp = [1]*len(nums) 

        dp[0] = 1 # dp[i]表示以nums[i]为结尾的最长连续递增子序列的长度

        for i in range(1, len(nums)):
            if nums[i] > nums[i-1]:
                dp[i] = dp[i-1]+1
        # print(dp)
        result = max(dp)
        
        return result


        

718. 最长重复子数组

dp含义:dp[i][j]表示以i-1,j-1为结尾的最长重复子数组的长度,最后结果要求所有数的最大值(子序列问题通用)

tips:

用二维数组记下状态

动态规划的实质,状态转移,下一个状态只跟上一个状态有关,如果记录状态是重点,即dp数组的构造和含义

class Solution:
    def findLength(self, nums1: List[int], nums2: List[int]) -> int:
        # initialization
        dp = [[0]*(len(nums2)+1) for _ in range(len(nums1)+1)] # dp[i][j]表示以i-1,j-1为结尾的最长重复子数组的长度

        for i in range(1, len(nums1)+1):
            for j in range(1, len(nums2)+1):
                if nums1[i-1] == nums2[j-1]:
                    dp[i][j] = dp[i-1][j-1]+1
            dp[i][-1] = max(dp[i])
            # print(dp[i])

        # print(dp)
        result = 0
        for i in range(len(nums1)+1):
            result = max(result, dp[i][-1])

        return result






        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值