重点章节:
导数/微分/积分
梯度
泰勒展开公式
第一课 求极限
求极限-函数
例一:试求limx−>3(x2+3)=32+2=12例二:试求limx−>0sinx=sin0=0 例一:试求 \mathop{lim}_{x->3}{(x^2+3)}=3^2+2=12\\ 例二:试求 \mathop{lim}_{x->0}{sinx}=sin0=0 例一:试求limx−>3(x2+3)=32+2=12例二:试求limx−>0sinx=sin0=0
常见的求导
∞/∞型
0/0型
1∞型
记住这个公式即可。
xy=(elnx)y
0·∞型
将其转换为0/0或者∞/∞型
左右极限
试证明limx−>01x是否存在 试证明 \mathop{lim}_{x->0}{\frac{1}{x}}是否存在 试证明limx−>0x1是否存在
做题步骤:
①求函数的左极限②求函数的右极限
③若左极限=右极限=不为oo的数,则函数极限存在,且函数极限=左极限=右极限;若为其他情况,则函数极限不存在/函数没有极限
limx−>0−1x=−∞,limx−>0+1x=+∞所以极限不存在 \mathop{lim}_{x->0^-}{\frac{1}{x}}=-∞,\\ \mathop{lim}_{x->0^+}{\frac{1}{x}}=+∞\\ 所以极限不存在 limx−>0−x1=−∞,limx−>0+x1=+∞所以极限不存在
已知f’(X0)=?,求某极限
根据导数的定义,记住两个公式:
求极限-数列
1/3 分析an的取值范围
2/3 证明an的极限存在
3/3 夹逼定理
第二课《连续、间断点》
函数连续不连续是要看区间的
1/3 证明f(x)在某点连续
例一:试证明f(x)={ sinxx,x>01,x≤0在x=0处连续 例一:试证明f(x)= \begin{cases} \frac{sinx}{x},x>0 \\ 1,x≤0 \end{cases} 在x=0处连续 例一:试证明f(x)={ xsinx,x>01,x≤0在x=0处连续
做题步骤:
①f(0)=1limx−>0−f(x)=limx−>0−1=1,limx−>0+f(x)=limx−>0+sinxx=limx−>0+xx=limx−>0+1=1②∵f(0)=limx−>0−f(x)=limx−>0+f(x)成立∴f(x)在x=0处连续 ①f(0)=1 \\ \mathop{lim}_{x->0^-}{f(x)}=\mathop{lim}_{x->0^-}1=1,\\ \mathop{lim}_{x->0^+}{f(x)}=\mathop{lim}_{x->0^+}{\frac{sinx}{x}}=\mathop{lim}_{x->0^+}{ {\frac{x}{x}}}=\mathop{lim}_{x->0^+}1=1\\ ②∵f(0)=\mathop{lim}_{x->0^-}{f(x)}=\mathop{lim}_{x->0^+}{f(x)}成立\\ ∴f(x)在x=0处连续 ①f(0)=1limx−>0−f(x)=limx−>0−1=1,limx−>0+f(x)=limx−>0+xsinx=limx−>0+xx=