高数--猴博士爱讲课



重点章节

导数/微分/积分

梯度

泰勒展开公式

第一课 求极限

求极限-函数

例一:试求limx−>3(x2+3)=32+2=12例二:试求limx−>0sinx=sin0=0 例一:试求 \mathop{lim}_{x->3}{(x^2+3)}=3^2+2=12\\ 例二:试求 \mathop{lim}_{x->0}{sinx}=sin0=0 例一:试求limx>3(x2+3)=32+2=12例二:试求limx>0sinx=sin0=0

常见的求导

image-20230105123125551

∞/∞型

image-20230105124315525

0/0型

image-20230105124600085

1

记住这个公式即可。

xy=(elnx)y

image-20230105125641867

0·∞型

将其转换为0/0或者∞/∞型

image-20230105130138538

左右极限

试证明limx−>01x是否存在 试证明 \mathop{lim}_{x->0}{\frac{1}{x}}是否存在 试证明limx>0x1是否存在

做题步骤:
①求函数的左极限

②求函数的右极限
左极限=右极限=不为oo的数,则函数极限存在,且函数极限=左极限=右极限;

若为其他情况,则函数极限不存在/函数没有极限

limx−>0−1x=−∞,limx−>0+1x=+∞所以极限不存在 \mathop{lim}_{x->0^-}{\frac{1}{x}}=-∞,\\ \mathop{lim}_{x->0^+}{\frac{1}{x}}=+∞\\ 所以极限不存在 limx>0x1=limx>0+x1=+所以极限不存在

已知f’(X0)=?,求某极限

根据导数的定义,记住两个公式:

image-20230105131023507

image-20230105131137418

image-20230105131341754

求极限-数列

1/3 分析an的取值范围

image-20230105132410128

2/3 证明an的极限存在

image-20230105132847312

3/3 夹逼定理

image-20230105133255925

第二课《连续、间断点》

函数连续不连续是要看区间

image-20230105133525667

1/3 证明f(x)在某点连续

例一:试证明f(x)={ sinxx,x>01,x≤0在x=0处连续 例一:试证明f(x)= \begin{cases} \frac{sinx}{x},x>0 \\ 1,x≤0 \end{cases} 在x=0处连续 例一:试证明f(x)={ xsinx,x>01,x0x=0处连续

做题步骤

image-20230105141123075

①f(0)=1limx−>0−f(x)=limx−>0−1=1,limx−>0+f(x)=limx−>0+sinxx=limx−>0+xx=limx−>0+1=1②∵f(0)=limx−>0−f(x)=limx−>0+f(x)成立∴f(x)在x=0处连续 ①f(0)=1 \\ \mathop{lim}_{x->0^-}{f(x)}=\mathop{lim}_{x->0^-}1=1,\\ \mathop{lim}_{x->0^+}{f(x)}=\mathop{lim}_{x->0^+}{\frac{sinx}{x}}=\mathop{lim}_{x->0^+}{ {\frac{x}{x}}}=\mathop{lim}_{x->0^+}1=1\\ ②∵f(0)=\mathop{lim}_{x->0^-}{f(x)}=\mathop{lim}_{x->0^+}{f(x)}成立\\ ∴f(x)在x=0处连续 f(0)=1limx>0f(x)=limx>01=1limx>0+f(x)=limx>0+xsinx=limx>0+xx=

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值