题意
已知构成凸多边形的条件为,任意
n
−
1
n-1
n−1条边之和大于最后一条边。
我们用最小的加起来比较能不能超过最大的,来判断是否可以构成凸多边形。
一个合法方案的价值为选的边数,求总期望。
一共有
n
n
n条边,第
i
i
i条边权值为
i
i
i
题解
首先是肯定可以
d
p
dp
dp的,但是
d
p
dp
dp是三维的,计算出前
i
i
i位能组成的和。
如何优化呢?
首先,正难则反,我们可以计算出所有方案都合法,则期望为
∑
i
=
1
n
C
(
n
,
i
)
∗
i
\sum_{i=1}^{n} C(n,i)*i
∑i=1nC(n,i)∗i
我们只需要求出不合法方案数,如何求解呢,就是和不超过当前的。
首先,此时凑的最大和不会超过
n
n
n,可以设置为
d
p
[
n
]
[
n
]
dp[n][n]
dp[n][n]
然后
d
p
[
i
]
[
j
]
=
d
p
[
i
−
1
]
[
j
]
+
d
p
[
i
−
1
]
[
j
−
i
]
dp[i][j]=dp[i-1][j]+dp[i-1][j-i]
dp[i][j]=dp[i−1][j]+dp[i−1][j−i]
这样的转移是合法的,不过会
M
L
E
MLE
MLE,滚动处理即可。
但是我们要求不合法的总期望,所以还要加上一层转移:
f
[
i
]
[
j
]
=
f
[
i
−
1
]
[
j
]
+
f
[
i
−
1
]
[
j
−
i
]
+
d
p
[
i
−
1
]
[
j
−
i
]
f[i][j]=f[i-1][j]+f[i-1][j-i]+dp[i-1][j-i]
f[i][j]=f[i−1][j]+f[i−1][j−i]+dp[i−1][j−i]
之前的期望加上去没有问题,转移过去的时候,每个方案都会增加一条边,所以是
d
p
[
i
−
1
]
[
j
−
i
]
dp[i-1][j-i]
dp[i−1][j−i]
到此已经结束,但是我真正写的时候还有很多细节。
#include<bits/stdc++.h>
#define FOR(i,l,r) for(int i=l;i<=r;i++)
#define inf 2e8
using namespace std;
const int maxn = 5006;
typedef long long ll;
const ll mod = 1e9+7;
ll dp[2][maxn],f[2][maxn];
ll F[maxn],Finv[maxn],ans[maxn];
ll all[maxn],INV[maxn];
inline ll quick_pow(ll x,int p){
ll res=1;
while(p){
if(p&1) res=(res*x)%mod;
x=(x*x)%mod, p>>=1;
}
return res;
}
inline ll inv(ll a){
ll inv_a=quick_pow(a,mod-2);
return inv_a;
}
void init(){
F[0]=Finv[0]=1ll;
FOR(i,1,maxn-1){
F[i]=F[i-1]*1ll*(ll)i%mod;
Finv[i]=Finv[i-1]*1ll*inv(i)%mod;
}
}
ll C(ll n,ll m){
if(m<0||m>n)return 0;
return F[n]*1ll*Finv[n-m]%mod*Finv[m]%mod;
}
int main(){
int n,m=5005;
init();
f[0][0]=0,dp[0][0]=1;
for(int i=1;i<=m;i++){
ans[i]=ans[i-1];
for(int j=0;j<=m;j++){
dp[i%2][j]=((j>=i?dp[(i-1)%2][j-i]:0)+dp[(i-1)%2][j])%mod;
f[i%2][j]=(((j>=i?f[(i-1)%2][j-i]+dp[(i-1)%2][j-i]:0))+f[(i-1)%2][j])%mod ;
if(j<=i)ans[i]=(ans[i]+f[(i-1)%2][j]+dp[(i-1)%2][j])%mod;
}
}
ll tot=1;
for(int i=1;i<=m;i++){
tot=(tot*2)%mod;
for(int j=1;j<=i;j++){
all[i]=(all[i]+C(i,j)%mod*j)%mod;
}
INV[i]=inv(tot);
}
int T;cin>>T;
while(T--){
scanf("%d",&n);
ll ret=(all[n]-ans[n]+mod)%mod*INV[n]%mod;
printf("%lld\n",ret);
}
}