洛谷11月月赛 I & MtOI2019 Ex Div.2 C

题意

已知构成凸多边形的条件为,任意 n − 1 n-1 n1条边之和大于最后一条边。
我们用最小的加起来比较能不能超过最大的,来判断是否可以构成凸多边形。

一个合法方案的价值为选的边数,求总期望。
一共有 n n n条边,第 i i i条边权值为 i i i

题解

首先是肯定可以 d p dp dp的,但是 d p dp dp是三维的,计算出前 i i i位能组成的和。
如何优化呢?
首先,正难则反,我们可以计算出所有方案都合法,则期望为 ∑ i = 1 n C ( n , i ) ∗ i \sum_{i=1}^{n} C(n,i)*i i=1nC(n,i)i
我们只需要求出不合法方案数,如何求解呢,就是和不超过当前的。
首先,此时凑的最大和不会超过 n n n,可以设置为 d p [ n ] [ n ] dp[n][n] dp[n][n]
然后 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i − 1 ] [ j − i ] dp[i][j]=dp[i-1][j]+dp[i-1][j-i] dp[i][j]=dp[i1][j]+dp[i1][ji]
这样的转移是合法的,不过会 M L E MLE MLE,滚动处理即可。
但是我们要求不合法的总期望,所以还要加上一层转移:
f [ i ] [ j ] = f [ i − 1 ] [ j ] + f [ i − 1 ] [ j − i ] + d p [ i − 1 ] [ j − i ] f[i][j]=f[i-1][j]+f[i-1][j-i]+dp[i-1][j-i] f[i][j]=f[i1][j]+f[i1][ji]+dp[i1][ji]
之前的期望加上去没有问题,转移过去的时候,每个方案都会增加一条边,所以是 d p [ i − 1 ] [ j − i ] dp[i-1][j-i] dp[i1][ji]

到此已经结束,但是我真正写的时候还有很多细节。

#include<bits/stdc++.h>
#define FOR(i,l,r) for(int i=l;i<=r;i++)
#define inf 2e8
using namespace std;

const int maxn = 5006;
typedef long long ll;

const ll mod = 1e9+7;

ll dp[2][maxn],f[2][maxn];
ll F[maxn],Finv[maxn],ans[maxn];
ll all[maxn],INV[maxn];

inline ll quick_pow(ll x,int p){
    ll res=1;
    while(p){
        if(p&1) res=(res*x)%mod;
        x=(x*x)%mod, p>>=1;
    }
    return res;
}

inline ll inv(ll a){
    ll inv_a=quick_pow(a,mod-2);
    return inv_a;
}

void init(){
    F[0]=Finv[0]=1ll;
    FOR(i,1,maxn-1){
        F[i]=F[i-1]*1ll*(ll)i%mod;

        Finv[i]=Finv[i-1]*1ll*inv(i)%mod;
    }
}

ll C(ll n,ll m){
    if(m<0||m>n)return 0;
    return F[n]*1ll*Finv[n-m]%mod*Finv[m]%mod;
}

int main(){
    int n,m=5005;
    init();
    f[0][0]=0,dp[0][0]=1;
    for(int i=1;i<=m;i++){
        ans[i]=ans[i-1];
        for(int j=0;j<=m;j++){

            dp[i%2][j]=((j>=i?dp[(i-1)%2][j-i]:0)+dp[(i-1)%2][j])%mod;

            f[i%2][j]=(((j>=i?f[(i-1)%2][j-i]+dp[(i-1)%2][j-i]:0))+f[(i-1)%2][j])%mod ;
            if(j<=i)ans[i]=(ans[i]+f[(i-1)%2][j]+dp[(i-1)%2][j])%mod;

        }
    }
    ll tot=1;
    for(int i=1;i<=m;i++){
        tot=(tot*2)%mod;
        for(int j=1;j<=i;j++){

            all[i]=(all[i]+C(i,j)%mod*j)%mod;

        }
        INV[i]=inv(tot);
    }
    int T;cin>>T;
    while(T--){
        scanf("%d",&n);

        ll ret=(all[n]-ans[n]+mod)%mod*INV[n]%mod;
        printf("%lld\n",ret);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值