2019 ICPC Asia Yinchuan Regional K

题意

两个矩阵,找最大公共子矩阵

题解

按顺序标号位置的话,两矩阵相差得到新矩阵。
可以发现,相同元素构成的子矩阵的大小即我们所要求的。

容易想到,记录每个点相同部分向上最远到多少。
然后枚举每一行,找一行中答案即可, n 3 n^3 n3做法,就是枚举每一行的起点终点,维护个最小值。

如何进一步优化呢,考虑到一个因素,如果以你当前位置为终点,那么你只需要知道上上个最小的位置。
1、当前位置为最小
2、当前位置不是最小
考虑这两种情况,用单调栈即可。

第二种笨方法,令当前点为最小点,计算不破坏当前点最小性质的情况,向左向右能延伸多少。这个就是两遍单调栈的事情,注意计算上面位置的时候,要和每一行最早和自己相同的位置取个最大。(反过来就是取最小)

我用的第二种方法。

#include<bits/stdc++.h>
#define FOR(i,a,b) for(int i=a;i<=b;i++)
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
const int maxn = 1e3+10;
const int maxm = 1e6+10;
int n,m;
int A[maxn][maxn],B[maxn][maxn];
int pos[maxm],dp[maxn][maxn];
int l[maxn],r[maxn];


int main(){
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            scanf("%d",&A[i][j]);
            pos[A[i][j]]=(i-1)*m+j;
        }
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            scanf("%d",&B[i][j]);
            A[i][j]=(i-1)*m+j-pos[B[i][j]];
        }
    }
    for(int j=1;j<=m;j++){
        for(int i=1;i<=n;i++){
            if(i>1&&A[i][j]==A[i-1][j])dp[i][j]=dp[i-1][j]+1;
            else dp[i][j]=1;
        }
    }
    deque<pair<int,int> >dq;
    int ans=0,pre,val;
    for(int i=1;i<=n;i++){
        while(!dq.empty())dq.pop_back();
        dq.push_back(make_pair(-0x3f3f3f3f,0));
        val=0x3f3f3f3f,pre=0;
        for(int j=1;j<=m;j++){
            while(!dq.empty()&&dp[i][j]<=dq.back().first)dq.pop_back();
            if(A[i][j]!=val)pre=j,val=A[i][j];
            l[j]=max(dq.back().second+1,pre);
            dq.push_back(make_pair(dp[i][j],j));
        }
        while(!dq.empty())dq.pop_back();
        dq.push_back(make_pair(-0x3f3f3f3f,m+1));
        val=0x3f3f3f3f,pre=0;
        for(int j=m;j>=1;j--){
            while(!dq.empty()&&dp[i][j]<=dq.back().first)dq.pop_back();
            if(A[i][j]!=val)pre=j,val=A[i][j];
            r[j]=min(dq.back().second-1,pre);
            ans=max(ans,(r[j]-l[j]+1)*dp[i][j]);
            dq.push_back(make_pair(dp[i][j],j));
        }
    }
    cout<<ans<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值