题意
两个矩阵,找最大公共子矩阵
题解
按顺序标号位置的话,两矩阵相差得到新矩阵。
可以发现,相同元素构成的子矩阵的大小即我们所要求的。
容易想到,记录每个点相同部分向上最远到多少。
然后枚举每一行,找一行中答案即可,
n
3
n^3
n3做法,就是枚举每一行的起点终点,维护个最小值。
如何进一步优化呢,考虑到一个因素,如果以你当前位置为终点,那么你只需要知道上上个最小的位置。
1、当前位置为最小
2、当前位置不是最小
考虑这两种情况,用单调栈即可。
第二种笨方法,令当前点为最小点,计算不破坏当前点最小性质的情况,向左向右能延伸多少。这个就是两遍单调栈的事情,注意计算上面位置的时候,要和每一行最早和自己相同的位置取个最大。(反过来就是取最小)
我用的第二种方法。
#include<bits/stdc++.h>
#define FOR(i,a,b) for(int i=a;i<=b;i++)
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
const int maxn = 1e3+10;
const int maxm = 1e6+10;
int n,m;
int A[maxn][maxn],B[maxn][maxn];
int pos[maxm],dp[maxn][maxn];
int l[maxn],r[maxn];
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&A[i][j]);
pos[A[i][j]]=(i-1)*m+j;
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&B[i][j]);
A[i][j]=(i-1)*m+j-pos[B[i][j]];
}
}
for(int j=1;j<=m;j++){
for(int i=1;i<=n;i++){
if(i>1&&A[i][j]==A[i-1][j])dp[i][j]=dp[i-1][j]+1;
else dp[i][j]=1;
}
}
deque<pair<int,int> >dq;
int ans=0,pre,val;
for(int i=1;i<=n;i++){
while(!dq.empty())dq.pop_back();
dq.push_back(make_pair(-0x3f3f3f3f,0));
val=0x3f3f3f3f,pre=0;
for(int j=1;j<=m;j++){
while(!dq.empty()&&dp[i][j]<=dq.back().first)dq.pop_back();
if(A[i][j]!=val)pre=j,val=A[i][j];
l[j]=max(dq.back().second+1,pre);
dq.push_back(make_pair(dp[i][j],j));
}
while(!dq.empty())dq.pop_back();
dq.push_back(make_pair(-0x3f3f3f3f,m+1));
val=0x3f3f3f3f,pre=0;
for(int j=m;j>=1;j--){
while(!dq.empty()&&dp[i][j]<=dq.back().first)dq.pop_back();
if(A[i][j]!=val)pre=j,val=A[i][j];
r[j]=min(dq.back().second-1,pre);
ans=max(ans,(r[j]-l[j]+1)*dp[i][j]);
dq.push_back(make_pair(dp[i][j],j));
}
}
cout<<ans<<endl;
}