P1983 车站分级

图论的比较有意思的一道题。

题意:告诉你车起始站、终点站、停靠站、且火车站有等级之分,低的停了,高的必须停。

给你多组数据,让你求解火车等级划分了几级。

题解:可以画出一张图。那么对于每个数据,在停靠站和未停靠站之间加有向边。也就是一个>关系。

对于最后的图,找过最长的一条路径。【拓扑排序求解】

这样加边的过程是n^2的,遍历数据又是N。

所以我们通过对于每次加边就设置虚点,这样依然能保持>关系,而且n^2可以简化成2n条边。

需要注意的是,这时候算路径的时候,每次遇到虚点可以将此时的值--。

代码:

#include<bits/stdc++.h>
#define FOR(i,l,r) for(int i=l;i<=r;i++)
using namespace std;

const int MAXN = 1000005;

struct Edge{
    int from,to,dist;
    Edge() {}
    Edge(int _from,int _to,int _dist): from(_from),to(_to),dist(_dist){}
};

Edge ed[MAXN];
int n,m;
int he[MAXN],ne[MAXN],etop=1;
int ind[MAXN],d[MAXN];
int A[MAXN],flag[MAXN];
int ans;

void insert(int u,int v,int w){
    ed[etop]=Edge(u,v,w);
    ne[etop]=he[u];
    he[u]=etop++;
}

void topo(){
    queue<int>q;
    FOR(i,1,n+m)if(!ind[i])
        q.push(i);
    while(!q.empty()){
        int now = q.front();q.pop();
        for(int i=he[now];i;i=ne[i]){
            Edge &e = ed[i];
            d[e.to]=max(d[e.to],d[now]+1);
            if(e.to>n)d[e.to]--;
            ans=max(ans,d[e.to]);
            if(!--ind[e.to])q.push(e.to);
        }
    }
}
 
int main()
{
    cin>>n>>m;
    int s; 
    FOR(i,1,m){
        scanf("%d",&s);
        memset(flag,0,sizeof(flag));
        FOR(j,1,s){
            scanf("%d",&A[j]);
            flag[A[j]]=1;
        }
        FOR(j,A[1],A[s])
        if(flag[j])
        {
            insert(j,n+i,1);
            ind[n+i]++;
        }
        FOR(j,A[1],A[s])
        if(!flag[j])
        {
            insert(n+i,j,1);
            ind[j]++;
        }
    }
    topo();
    cout<<ans+1<<endl;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值