图论的比较有意思的一道题。
题意:告诉你车起始站、终点站、停靠站、且火车站有等级之分,低的停了,高的必须停。
给你多组数据,让你求解火车等级划分了几级。
题解:可以画出一张图。那么对于每个数据,在停靠站和未停靠站之间加有向边。也就是一个>关系。
对于最后的图,找过最长的一条路径。【拓扑排序求解】
这样加边的过程是n^2的,遍历数据又是N。
所以我们通过对于每次加边就设置虚点,这样依然能保持>关系,而且n^2可以简化成2n条边。
需要注意的是,这时候算路径的时候,每次遇到虚点可以将此时的值--。
代码:
#include<bits/stdc++.h>
#define FOR(i,l,r) for(int i=l;i<=r;i++)
using namespace std;
const int MAXN = 1000005;
struct Edge{
int from,to,dist;
Edge() {}
Edge(int _from,int _to,int _dist): from(_from),to(_to),dist(_dist){}
};
Edge ed[MAXN];
int n,m;
int he[MAXN],ne[MAXN],etop=1;
int ind[MAXN],d[MAXN];
int A[MAXN],flag[MAXN];
int ans;
void insert(int u,int v,int w){
ed[etop]=Edge(u,v,w);
ne[etop]=he[u];
he[u]=etop++;
}
void topo(){
queue<int>q;
FOR(i,1,n+m)if(!ind[i])
q.push(i);
while(!q.empty()){
int now = q.front();q.pop();
for(int i=he[now];i;i=ne[i]){
Edge &e = ed[i];
d[e.to]=max(d[e.to],d[now]+1);
if(e.to>n)d[e.to]--;
ans=max(ans,d[e.to]);
if(!--ind[e.to])q.push(e.to);
}
}
}
int main()
{
cin>>n>>m;
int s;
FOR(i,1,m){
scanf("%d",&s);
memset(flag,0,sizeof(flag));
FOR(j,1,s){
scanf("%d",&A[j]);
flag[A[j]]=1;
}
FOR(j,A[1],A[s])
if(flag[j])
{
insert(j,n+i,1);
ind[n+i]++;
}
FOR(j,A[1],A[s])
if(!flag[j])
{
insert(n+i,j,1);
ind[j]++;
}
}
topo();
cout<<ans+1<<endl;
}