- 博客(36)
- 收藏
- 关注
原创 PermissionError: [Errno 13] Permission denied
摘要: 当Python提示无法写入"每日运行段落汇总.xlsx"文件时,主要原因是文件被Excel占用或路径权限问题。解决步骤:1)关闭Excel及相关进程;2)更换输出路径至桌面等位置;3)使用os.makedirs自动创建目录(可选)。推荐检查文件是否被占用或设为只读,并确保输出路径有效。代码示例展示了如何自动创建目录并指定新路径保存文件。
2025-07-18 17:09:38
243
原创 pandas.errors.ParserError: Error tokenizing data. C error: Expected 1 fields in line 3, saw 2
摘要:当 pandas.read_csv() 读取 CSV 文件出现列数不一致错误时,可通过以下方法解决:1) 指定正确的分隔符 sep 参数,如使用制表符 \t 或自动检测分隔符;2) 使用 on_bad_lines='skip' 跳过异常行;3) 用 Excel 重新保存为标准 CSV 格式。建议先用代码读取文件前几行检查具体格式问题。重点检查文件分隔符是否统一,编码是否正确(如 GBK)。
2025-07-18 17:00:58
375
原创 UnicodeDecodeError: ‘utf-8‘ codec can‘t decode byte 0xd0 in position 0: invalid continuation byte
文章摘要: 当用utf-8读取文件出现编码错误时,通常是因为文件实际编码为GBK、ANSI等。解决方法包括:1)尝试encoding='gbk'(适合中文文件);2)使用兼容性强的latin1(不推荐中文);3)通过chardet库自动检测编码。示例代码演示了如何用GBK读取CSV文件及检测文件编码,确保正确加载数据。Windows系统生成的中文文件多为GBK编码。
2025-07-18 16:56:10
339
原创 SyntaxError: (unicode error) ‘unicodeescape‘ codec can‘t decode bytes in position 2-3: truncated \UX
Python中处理Windows文件路径报错时,常见的解决方法是:1)使用原始字符串前缀r;2)将反斜杠替换为正斜杠;3)推荐使用pathlib或os.path模块实现跨平台兼容。这些方法能避免因转义字符导致的路径解析错误,其中pathlib提供的面向对象路径操作最为安全可靠。
2025-07-18 16:51:00
338
原创 基于pandas,按日期时间排序,计算每个连续段的开始时间、结束时间,以及时长
本文介绍了一个数据处理项目,用于分析时间序列数据的连续性并生成统计报表。项目流程包括:1)读取并筛选数据;2)按时间排序并计算相邻时间差;3)将连续时间点(间隔≤1分钟)分组为段落;4)计算每段的起止时间、时长;5)按日期汇总所有段落信息;6)生成包含日期、各时段信息及总时长的表格。通过Python的pandas库实现了数据处理,最终输出Excel格式的统计结果。该方案适用于需要分析时间连续性模式的应用场景。
2025-07-18 16:43:34
616
原创 基于python的web系统界面登录
这是一个简单的Flask Web应用实现登录功能的示例。Python代码使用Flask框架创建了两个路由:/index显示欢迎页面并接收用户名参数,/login渲染登录页面。HTML文件包含一个登录表单,通过GET方法提交用户名和密码到/index路由。应用启动时设置debug=True仅用于开发环境。整个示例展示了Flask处理路由、模板渲染和表单数据获取的基本用法。
2025-06-18 22:55:50
1157
1
原创 基于python的查询工具,查询手机号的卡号归属地
本文介绍了一个利用Python进行电话号码归属地查询的代码示例。代码使用requests库发送HTTP请求,伪装浏览器UA头,通过lxml库解析网页数据,并运用XPath提取号码归属地信息。程序构建了查询URL,发送GET请求后解析返回的HTML内容,最终提取并输出号码归属地等字段数据。该代码展示了如何实现简单的网络爬虫功能,可用于获取手机号码的运营商和归属地信息查询。
2025-06-17 00:38:22
254
原创 AttributeError AttributeError: ‘function‘ object has no attribute ‘args‘ Traceback (most recent cal
摘要:本文介绍了Python Flask框架实现简单点赞系统的过程。通过实例代码展示了如何创建web服务端点(/index和/dianzan),使用render_template渲染HTML模板,并处理GET请求参数。HTML模板采用Jinja2语法循环显示数据列表,包含ID、类型、点赞数和操作列,点击点赞链接会触发/dianzan路由并更新对应项的点赞数。该示例演示了Flask的基本用法,包括路由设置、模板渲染和请求处理,适合作为web开发的入门练习。
2025-06-12 00:53:58
329
原创 TemplateSyntaxError jinja2.exceptions.TemplateSyntaxError: expected token ‘end of statement block‘,
摘要:本文记录了一个基于Flask的点赞系统开发过程。通过Jinja2模板引擎实现动态渲染,解决模板语法错误(如空格导致的TemplateSyntaxError)。关键点包括:使用{% %}嵌入Python代码,严格注意空格规范;通过render_template传递数据列表到HTML;表格动态生成点赞条目,并处理点击事件。代码示例: 后端Flask路由定义数据列表,前端HTML用Jinja2循环渲染表格,点击链接触发点赞功能。最终实现动态显示ID、类型、点赞数和操作按钮。
2025-06-11 13:37:02
219
原创 IndexError: list index out of range,python爬虫时,xpath路径正确,但匹配不到节点
scrapy的xpath在控制台可以匹配,但是到了代码无法匹配(无法匹配tbody标签)
2025-06-07 18:00:51
244
原创 基于python的web应用,实现自动抽奖系统
本文展示了一个基于Flask框架的简单抽奖Web应用。通过Python代码实现服务端功能,包括随机选择幸运观众(从预设名单中抽取)并渲染HTML页面。前端使用基础HTML模板显示名单和抽奖结果,点击"开始抽奖"触发后端随机选择逻辑。代码结构清晰,包含路由定义、模板渲染及开发环境配置,适合初学者理解Flask基础应用开发流程。
2025-06-07 17:46:37
478
原创 用python爬取小说,从一章到全部
本文介绍了使用Python爬取小说内容方法。通过requests库发送请求,并伪装UA头,结合lxml解析HTML内容,提取章节标题和正文。单章爬取需手动指定URL,保存为TXT文件;全本爬取则通过循环自动获取下一章链接,直至结束。代码示例详细展示了请求发送、响应解析、数据保存及循环终止条件,最终实现《斗罗大陆》小说的批量下载。
2025-06-01 18:21:55
479
原创 多层感知机、卷积神经网络、循环神经网络、循环卷积神经网络预测多元分类
#多层感知器神经网络模型# 0. 调用要使用的包from keras.datasets import reutersfrom keras.utils import np_utilsfrom keras.preprocessing import sequencefrom keras.models import Sequentialfrom keras.layers import Dense, Embeddingfrom keras.layers import Flattenmax_featu.
2021-07-21 19:58:54
716
原创 多层感知机、循环神经网络、卷积神经网络、循环神经网络、时间序列预测二元分类
#多层感知器神经网络模型# 0. 调用要使用的包from keras.datasets import imdbfrom keras.preprocessing import sequencefrom keras.models import Sequentialfrom keras.layers import Dense, Embeddingfrom keras.layers import Flattenmax_features = 25000text_max_words = 200# 1.
2021-07-21 16:25:59
607
原创 多层感知机、循环神经网络、Stateful循环神经网络、Stateful叠加循环神经网络预测数值
#多层感知器神经网络模型# 0. 调用要使用的包import numpy as npfrom keras.models import Sequentialfrom keras.layers import Dense, LSTM, Dropoutfrom sklearn.preprocessing import MinMaxScalerimport matplotlib.pyplot as plt%matplotlib inlinedef create_dataset(signal_data.
2021-07-20 18:40:49
392
原创 多层感知机、卷积神经网络、深度卷积神经网络实现图像的多元识别
应用场景:1: 实现植物的分类2:各种有区别度的分类3:台风的类型4:细菌的种类#多层感应器神经网络模型# 0. 调用要使用的包import numpy as np31from keras.utils import np_utilsfrom keras.datasets import mnistfrom keras.models import Sequentialfrom keras.layers import Dense, Activationwidth = 28height
2021-07-19 18:58:47
609
原创 多层感知机、卷积神经网络、深度卷积神经网络实现图片的二元分类
应用范围:1:人脸部照片性别识别2:产品线上产品优劣识别3:医疗照片是否患病识别# 多层感应器神经网络模型# 0. 调用要使用的包from keras.utils import np_utilsfrom keras.datasets import mnistfrom keras.models import Sequentialfrom keras.layers import Dense, Activationwidth = 28height = 28# 1. 生成数据集# 调用训
2021-07-19 11:42:40
388
原创 多层感应神经网络、卷积神经网络预测图片复杂度数值
1:将固定区域内拍摄视频复杂度,密度等指标数值化2:预测雾霾指数3:预测绿潮、赤潮指数4:预测太阳板灰尘堆积程度#多层感应器神经网络模型# 0. 调用要使用的包import numpy as npfrom keras.models import Sequentialfrom keras.layers import Densewidth = 20height = 20def generate_dataset(samples): ds_x = [] ds_y = [
2021-07-18 16:19:53
453
原创 keras 模型可视化
Failed to import pydot. You must install pydot and graphviz for pydotprint to work1:把以前下的 pydot 与 graphviz 删掉2:到官网上重新下载 graphviz3:重新安装 ,不要放在C盘,因为放在C盘启动graphviz需要权限4:配置环境变量如下5:都装好了6:模型可视化from keras.layers import Conv2D, MaxPool2Dfrom keras.la
2021-07-02 19:14:37
378
1
原创 设置早停,预防过拟合
from keras.callbacks import EarlyStoppingearlyStopping = EarlyStopping(patience = 20 )his = model.fit(X_TRAIN,Y_TRAIN,epochs=400,batch_size = 32,validation_data = (X_VAL,Y_VAL),callbacks = [earlyStopping])# batch_size = 32 默认训练32组数据更新一次模型的权重...
2021-06-30 17:21:04
556
原创 keras编写回调函数
调用fit函数经历50个周期,与调用50次fit函数效果相同from keras.datasets import mnist #调用mnist数据包from keras import modelsfrom keras import layersclass CB(keras.callbacks.Callback): def __init__(self): self.TRAIN_LOSS = [] self.VAL_LOSS = [] se
2021-06-29 14:28:35
278
原创 Keras +TensorBoard 可视化
from keras.datasets import mnist #调用mnist数据包from keras import modelsfrom keras import layers(train_images, train_labels), (test_images, test_labels) = mnist.load_data() #调用训练集和测试集#分离训练集和验证集X_VAL=train_images[50000:] # 50000到60000Y..
2021-06-28 23:16:35
391
1
原创 神经网络模型训练mnist
from keras.datasets import mnist #调用mnist数据包from keras import modelsfrom keras import layers(train_images, train_labels), (test_images, test_labels) = mnist.load_data() #调用训练集和测试集#分离训练集和验证集X_VAL=train_images[50000:] # 50000到60000Y_VA.
2021-06-28 15:58:40
424
原创 yolov5训练自己的模型
YOLOv5自己模型跑的结果那么如何自己的模型呢?1:创建自己的四个文件夹、(绝对路径不要有中文汉字,自己踩过的坑)1.11.21.31.41.51.62:训练出自己的模型2.1 这个.pt文件自己下载yolov5是没有的,还需要自己去下在。2.22.3可能遇到字节溢出等问题2.4结果...
2021-06-05 17:31:29
482
原创 VS 2019 ,VS2017,VS2015无法启动程序XXXX.exe,系统找不到指定的路径
解决方法:源文件那个地方只放一个文件,还有project上面的XXX.cpp只放一个文件,两个地方同时满足,就可以多次运行程序了,标题上的问题就解决了,如果成功了就给我点个赞吧!!!
2020-10-08 17:20:40
3917
6
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅