ZigZag Conversion

题目:ZigZag Conversion

The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility)

P   A   H   N
A P L S I I G
Y   I   R
And then read line by line:  "PAHNAPLSIIGYIR"

Write the code that will take a string and make this conversion given a number of rows:

string convert(string text, int nRows);

convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR".

结题思路:

分二种情况,拿nRows=3举例,经观测得第一行和最后一行规律相同,第二行跟其他行有区别.因此我们分别找出他们的规律即可。

首先,第一行很容易得到每个字母所在字符串的位置:[0,4,8,12],那后面两行只要每次平移1位就能得到位置,不同的是中间一行多了几个字母.因此,找到中间行的规律。即可

public String convert(String s, int numRows) {
		if(s.length()<=numRows||numRows==1) return s;
		int middleNum =numRows-2;
		String str="";
		ArrayList<Integer> list =new ArrayList<Integer>();
		for(int i=0;i<numRows;i++){
			if(i==0){
				int index=i;
				while(index<s.length()){
					list.add(index);
					str+=s.charAt(index);
					index+=numRows-i+middleNum;
				}
			}
			else if(i==numRows-1){
				for(int index:list){
					if(index+i<s.length())
						str+=s.charAt(index+i);
				}
			}
			else{
				for(int index:list){
					if(index+i<s.length()){
						str+=s.charAt(index+i);
						if(index+2*numRows-i-2<s.length())
							str+=s.charAt(index+2*numRows-i-2);
					}
				}
			}
		}
		return str;
	}
第一次写,写得不好请见谅。好像我的写麻烦了,等我想到好的方法,继续补上去。欢迎评论~~~


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值