一、项目背景
A/B测试:是一种源于生物医学中的双盲实验,将试验对象随机分组并针对不同组对象给不同的变量刺激,然后采集实验数据,运用统计学上的假设检验判断不同变量对实验的效果是否显著的科学实验方法。
本项目通过对AB测试数据的分析判断新旧两版页面在用户转化上是否有显著区别,决策是否需要采用新的页面。
注:数据集来自电商网站
二、查看数据
2.1 字段注释
- user id - 用户ID
- timestamp - 用户行为时间戳
- group - treatment=实验组,control=对照组(不接受实验变量处理的对象组)
- landing_page - 展示的页面版本
- converted - 是否转化(0代表没有转化,1代表已经转化)
2.2 查看数据信息
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
#导入数据:ab_data
ABtest=pd.read_csv(r"/Users/kuebiko/Desktop/电商页面AB测试/ab_data.csv")
#查看前5行数据
ABtest.head()
user_id | timestamp | group | landing_page | converted | |
---|---|---|---|---|---|
0 | 851104 | 2017-01-21 22:11:48.556739 | control | old_page | 0 |
1 | 804228 | 2017-01-12 08:01:45.159739 | control | old_page | 0 |
2 | 661590 | 2017-01-11 16:55:06.154213 | treatment | new_page | 0 |
3 | 853541 | 2017-01-08 18:28:03.143765 | treatment | new_page | 0 |
4 | 864975 | 2017-01-21 01:52:26.210827 | control | old_page |