电商页面A/B测试分析报告

该报告详述了一项电商网站A/B测试的分析过程,旨在评估新旧两个页面版本对用户转化的影响。通过对数据的清洗、缺失值处理、逻辑错误检查和重复值检查,进行了假设检验。结果显示,虽然新旧页面存在统计学上的显著差异,但效应量极小,几乎可以忽略不计,意味着页面变更对转化率的影响不大。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、项目背景

A/B测试:是一种源于生物医学中的双盲实验,将试验对象随机分组并针对不同组对象给不同的变量刺激,然后采集实验数据,运用统计学上的假设检验判断不同变量对实验的效果是否显著的科学实验方法。

本项目通过对AB测试数据的分析判断新旧两版页面在用户转化上是否有显著区别,决策是否需要采用新的页面。

注:数据集来自电商网站

二、查看数据

2.1 字段注释

  • user id  - 用户ID
  • timestamp - 用户行为时间戳
  • group - treatment=实验组,control=对照组(不接受实验变量处理的对象组)
  • landing_page - 展示的页面版本
  • converted - 是否转化(0代表没有转化,1代表已经转化)

2.2 查看数据信息

import pandas as pd  
import numpy as np
import matplotlib.pyplot as plt 
import seaborn as sns
%matplotlib inline
#导入数据:ab_data
ABtest=pd.read_csv(r"/Users/kuebiko/Desktop/电商页面AB测试/ab_data.csv")
#查看前5行数据
ABtest.head()
user_id timestamp group landing_page converted
0 851104 2017-01-21 22:11:48.556739 control old_page 0
1 804228 2017-01-12 08:01:45.159739 control old_page 0
2 661590 2017-01-11 16:55:06.154213 treatment new_page 0
3 853541 2017-01-08 18:28:03.143765 treatment new_page 0
4 864975 2017-01-21 01:52:26.210827 control old_page
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值