DE算法是一种基于群体进化的算法,通过群体内的个体间的合作与竞争来实现对优化问题的求解,其本质是给予市属编码的具有保优思想的贪婪遗传算法。
算法基本思想:
对当前种群进行变异和交叉操作,产生新种群,再利用基于贪婪思想的选择操作对这两个种群进行选择,从而产生最终的新一代种群。
差分:(百度百科)
差分(difference)又名差分函数或差分运算,差分的结果反映了离散量之间的一种变化,是研究离散数学的一种工具。它将原函数f(x) 映射到f(x+a)-f(x+b)
以下公式 记住:
上标(例g)表示 第(g)代种群
下标 i 表示 第 i 个个体
i 后面的数字代表 个体维度
初始种群个体表示:
表示第g次迭代的第i个个体
NP为种群规模大小
D为个体