Python操作函数

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<class numpy._globals._NoValue at 0x40b6a26c>)
axis 不设置值,对 m*n 个数求均值,返回一个实数
axis = 0:压缩行,对各列求均值,返回 1* n 矩阵
axis =1 :压缩列,对各行求均值,返回 m *1 矩阵

np.mean(now2) # 对所有元素求均值
np.mean(now2,0) # 压缩行,对各列求均值
np.mean(now2,1) # 压缩列,对各行求均值
***********************
a = np.zeros((10, 2))
array([[0., 0.],
       [0., 0.],
       [0., 0.],
       [0., 0.],
       [0., 0.],
       [0., 0.],
       [0., 0.],
       [0., 0.],
       [0., 0.],
       [0., 0.]])

b = a.T    #转置
采用视图可以修改形状而不修改初始对象。
>>> c = b.view()
c.shape = (20)#错误

array([0, 1, 2, 3, 4, 5])
a.reshape((2,3))--
array([[0, 1, 2],
       [3, 4, 5]])

array([0, 1, 2, 3, 4, 5, 6, 7])
>>> a.reshape((2, 2, 2))
array([[[0, 1],
        [2, 3]],
 
       [[4, 5],
        [6, 7]]])
array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12],
       [13, 14, 15, 16]])

>>> a.shape
(4, 4)

>>> a.reshape(-1,1)

array([[ 1],
       [ 2],
       [ 3],
       [ 4],
       [ 5],
       [ 6],
       [ 7],
       [ 8],
       [ 9],
       [10],
       [11],
       [12],
       [13],
       [14],
       [15],
       [16]])
>>> a.reshape(2,-1)
array([[ 1,  2,  3,  4,  5,  6,  7,  8],
       [ 9, 10, 11, 12, 13, 14, 15, 16]])
不能整除会出错
**************
range()返回的是range object,而np.nrange()返回的是numpy.ndarray() 
range()不支持步长为小数,np.arange()支持步长为小数

range(1,5)--[1, 2, 3, 4]
np.arange(1, 5, .5)--array([ 1. ,  1.5,  2. ,  2.5,  3. ,  3.5,  4. ,  4.5])
***********************
np.cov(x)这种情况计算的是x方差的无偏估计,即s2=∑ni=1(x?x^)n?1,而np.var(x)计算的则是s2=∑ni=1(x?x^)n

>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T
>>> x
array([[0, 1, 2],
       [2, 1, 0]])

>>> np.cov(x)
array([[ 1., -1.],
       [-1.,  1.]])

>>> x = [-2.1, -1,  4.3]
>>> y = [3,  1.1,  0.12]
>>> X = np.vstack((x,y))
>>> print np.cov(X)
[[ 11.71        -4.286     ]
 [ -4.286        2.14413333]]
>>> print np.cov(x, y)
[[ 11.71        -4.286     ]
 [ -4.286        2.14413333]]
>>> print np.cov(x)
11.71
****************
   newData,meanVal=zeroMean(dataMat)
   covMat=np.cov(newData,rowvar=0)
numpy中的cov函数用于求协方差矩阵,参数rowvar很重要!若rowvar=0,说明传入的数据一行代表一个样本,若非0,说明传入的数据一列代表一个样本。因为newData每一行代表一个样本,所以将rowvar设置为0
*******
第一种意思,默认全部选择: 
如,X[:,0]就是取矩阵X的所有行的第0列的元素,X[:,1] 就是取所有行的第1列的元素
第二种意思,指定范围,注意这里含左不含右 
如,X[:, m:n]即取矩阵X的所有行中的的第m到n-1列数据,含左不含右

当一个进程的全局变量被声明为static之后,它的中文名叫静态全局变量。静态全局变量和其他的全局变量的存储地点并没有区别,都是在.data段(已初始化)或者.bss段(未初始化)内,但是它只在定义它的源文件内有效,其他源文件无法访问它。所以,普通全局变量穿上static外衣后,它就变成了新娘,已心有所属,只能被定义它的源文件(新郎)中的变量或函数访问。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值