中缀表达式的求值是我们人最熟悉的,但是对计算机来说却不好操作,因此,在计算结果时,往往会将中缀表达式转成其它表达式来操作(一般转成后缀表达式.)。
1、计算中缀表达式思路
新建操作数栈和运算符栈,从头遍历表达式:
如果是数字:
直接入数字栈。
如果是符号:
如果运算符栈为空,直接入栈。
如果当前运算符优先权大于运算符栈顶元素,直接入栈。
如果当前运算符优先权小于或等于栈顶元素优先权,则从数栈弹出两个数,从运算符栈弹出一个运算符,进行运算,将结果入数栈,再次判断运算符栈元素优先权。
遍历完表达式后,将数栈和运算符栈进行运算,数栈中最后保留的数字就为中缀表达式的值。
示例代码:
public class Calculator {
public static void main(String[] args) {
String expression = "7*21+21*3-21*10";
ArrayStack2 numStack = new ArrayStack2(10);//操作数栈
ArrayStack2 operStack = new ArrayStack2(10);//符号栈
int index = 0; //表达式下标
int num1 = 0;
int num2 = 0;
int oper = 0;
int res = 0;
char ch = ' ';
String keepnums = "";
//解析表达式
while (index < expression.length()) {
ch = expression.charAt(index);
if (isOperate(ch)) { //判断是否为操作符
if (operStack.isEmpty()) {//判断操作符是否为空
operStack.push(ch);
} else {
if (priority(ch) > priority(operStack.peek())) {
operStack.push(ch);
} else {
num2 = numStack.pop();
num1 = numStack.pop();
oper = operStack.pop();
res = cal(num1, num2, oper);
numStack.push(res);
operStack.push(ch);
}
}
} else if (isNum(ch)) { //判断是否为数字
keepnums += ch;
if (index == expression.length() - 1) {
numStack.push(Integer.parseInt(keepnums));
keepnums = "";
} else {
if (isOperate(expression.charAt(index + 1))) {
numStack.push(Integer.parseInt(keepnums));
keepnums = "";
}
}
}
++index;
}
//对栈内剩余数据处理
while (!operStack.isEmpty()){
num2 = numStack.pop();
num1 = numStack.pop();
oper = operStack.pop();
res = cal(num1,num2,oper);
numStack.push(res);
}
//输出结果
System.out.println(expression + " = " + numStack.peek());
}
public static boolean isOperate(char ch) {
return ch == '+' || ch == '-' || ch == '*' || ch == '/';
}
public static boolean isNum(char ch) {
return ch >= '0' && ch <= '9';
}
public static int priority(int ch) {
if (ch == '+' || ch == '-') {
return 0;
} else if (ch == '*' || ch == '/') {
return 1;
} else {
return -1;
}
}
public static int cal(int num1, int num2, int oper) {
switch (oper) {
case '+':
return num1 + num2;
case '-':
return num1 - num2;
case '*':
return num1 * num2;
case '/':
return num1 / num2;
}
return 0;
}
}
class ArrayStack2 {
private int top = -1;
private int[] stack;
private int maxSize = 5;
public ArrayStack2() {
}
public ArrayStack2(int maxSize) {
this.maxSize = maxSize;
stack = new int[maxSize];
}
//判断是否已满
public boolean isFull() {
return (top == maxSize - 1);
}
//判断是否已空
public boolean isEmpty() {
return (top == -1);
}
//入栈
public void push(int value) {
if (isFull()) {
System.out.println("栈已满!!!");
return;
}
++top;
stack[top] = value;
}
//出栈
public int pop() {
if (isEmpty()) {
throw new RuntimeException("栈已空!!!");
}
int value = stack[top];
--top;
return value;
}
//查看栈顶元素
public int peek() {
if (isFull()) {
throw new RuntimeException("栈已空!!!");
}
return stack[top];
}
//遍历栈
public void list() {
if (isEmpty()) {
System.out.println("栈已空!!!");
return;
}
int temp = top;
while (temp != -1) {
System.out.println(stack[temp]);
--temp;
}
}
}
2、中缀表达式转后缀表达式思路
- 初始化两个栈:运算符栈s1和储存中间结果的数组s2;
- 从左至右扫描中缀表达式;
- 遇到操作数时,将其压s2;
- 遇到运算符时,比较其与s1栈顶运算符的优先级:
- 如果s1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
- 否则,若优先级比栈顶运算符的高,也将运算符压入s1;
- 否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4-1)与s1中新的栈顶运算符相比较;
- 遇到括号时:
- 如果是左括号“(”,则直接压入s1
- 如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃 。
- 重复步骤2,直到表达式的最右边 将s1中剩余的运算符依次弹出并压入s2 ,得到后缀表达式。
示例代码后面有给出。
3、计算后缀表达式思路
从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素 和 次顶元素),并将结果入栈。重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果,前缀表达式与后缀表达式相反,计算方式是从右往左扫描。
实例代码:
import java.util.ArrayList;
import java.util.Stack;
public class PolandNotation {
public static void main(String[] args) {
String infixExpression = "1+((2+3)*4)-5";
//将中缀表达式拆分到数组
ArrayList<String> stringArrayList = getStringList(infixExpression);
System.out.println(stringArrayList);
//将中缀表达式转为后缀表达式
ArrayList<String> postfixExpressionList = toPostfixExpression(stringArrayList);
System.out.println(postfixExpressionList);
//运算后缀表达式
int result = calculate(postfixExpressionList);
//输出结果
System.out.println(infixExpression + " = " + result);
}
//将表达式拆分进ArrayList
private static ArrayList<String> getStringList(String infixExpression) {
ArrayList arrayList = new ArrayList();
int i = 0;
while (i < infixExpression.length()) {
char ch = infixExpression.charAt(i);
if (ch < '0' || ch > '9') {
arrayList.add("" + ch);
i++;
} else {
String num = "";
while (i < infixExpression.length() && infixExpression.charAt(i) >= '0' && infixExpression.charAt(i) <= '9') {
num += infixExpression.charAt(i);
i++;
}
arrayList.add(num);
}
}
return arrayList;
}
//中缀表达式转后缀表达式
private static ArrayList<String> toPostfixExpression(ArrayList<String> infixExpression) {
Stack<String> s1 = new Stack(); //运算符栈
ArrayList<String> s2 = new ArrayList();//存储数字
for (String s : infixExpression) {
if (s.matches("\\d+")) {
s2.add(s);
} else if (s.equals("(")) {
s1.add(s);
} else if (s.equals(")")) {
while (!s1.peek().equals("(")) {
s2.add(s1.pop());
}
s1.pop();
} else {
while (s1.size() != 0 && !s1.peek().equals("(") && priority(s) <= priority(s1.peek())) {
s2.add(s1.pop());
}
s1.push(s);
}
}
while (s1.size() != 0) {
s2.add(s1.pop());
}
return s2;
}
//计算运算符优先级
private static int priority(String s) {
switch (s) {
case "+":
return 1;
case "-":
return 1;
case "*":
return 2;
case "/":
return 2;
}
return 0;
}
//计算后缀表达式
private static int calculate(ArrayList<String> postfixExpresson) {
Stack<String> numStack = new Stack<>();
for (String s : postfixExpresson) {
if (s.matches("\\d+")) {
numStack.push(s);
} else {
int num2 = Integer.parseInt(numStack.pop());
int num1 = Integer.parseInt(numStack.pop());
int res = 0;
switch (s) {
case "+":
res = num1 + num2;
break;
case "-":
res = num1 - num2;
break;
case "*":
res = num1 * num2;
break;
case "/":
res = num1 / num2;
break;
}
numStack.push("" + res);
}
}
return Integer.parseInt(numStack.pop());
}
}