【Stata基础】第二章 简单线性回归模型

一、练习

  • 列出价格大于6000的国产汽车的价格
    sysuse auto, clear
    list price if price > 6000 & foreign == 0
    
  • 给出1978年维修记录少于3次或产地为国外的汽车价格和重量的描述性统计信息
    sum price weight if (rep78 < 3 | foreign == 1)
    
  • 本数据中有多少辆国产汽车价格大于6000?
    count if price > 6000 & foreign == 0
    
  • 列出 price wei len mpg turn foreign 变量的均值,标准差,中位数,最大值,最小值(对于这种要求,将一系列统计量以一张表格的形式展现出来更合适
    tabstat price wei len mpg turn foreign, stat(mean sd median max min)
    
  • 按国产和非国产为标准分类对price wei 进行描述性统计
    by foreign : sum price wei
    
  • 将数据按照价格进行升序和降序排列
    gsort price
    gsort -price
    
  • 删除1978年维修记录缺失的数据
    drop if rep78 == .
    
  • 将字符型变量make转换成数值型变量cenmake
    encode make, gen(cenmake)
    
  • 将price 转化成字符型变量
    tostring price, replace
    
  • 将price 转化成数值型变量
    destring price, replace
    
  • 生成一个虚拟变量,其中价格大于6000为1,否则表示为0
    gen vari = 1 if price > 6000
    replace vari = 0 if price <= 6000
    //这样比较麻烦,可以写成如下语句
    gen dum_price = price > 6000
    
  • 给出price wei len mpg 相关系数矩阵
    pwcorr price wei len mpg
    
  • 画出price wei len mpg 的相关系数矩阵散点图(graph是最需要掌握的画图命令
    graph matrix price wei len mpg
    
  • 画出price频率直方图
    histogram price, frequency
    
  • 画出price和weight的散点图
    scatter price weight
    
  • 给price 和weight散点图加上price和wei的拟合线
    twoway (scatter price weight) (lfit price weight)
    

二、线性回归模型

  • 做一个简单的OLS回归,其中被解释变量为price,解释变量为weight foreign

1. 初步探索

cd D:\Stata_Projects  //进入存储数据的工作目录
use "food.dta", clear  //使用这个数据集
* 得到数据之后,一般先浏览,检查数据,并看变量的描述性统计信息
* 画出food_exp与income的散点图,并保存
twoway (scatter food_exp income)
* 保存图片, 如果有了就替代
graph save food1, replace 
* 一步到位
twoway (scatter food_exp income), saving(food1, replace) 
* 更丰富的画图功能, 使用help graph就可以查看到
twoway (scatter food_exp income) ///  /* 基本语句,画什么的散点图 */
	   (lfit food_exp income), ///    /*拟合线*/
       ylabel(0(100)600)         ///  /* Y轴的刻度从0到600,间隔为100 */           
	   xlabel(0(5)35)            ///  /* X轴刻度0-35,间隔5 */
	   title(食物消费数据)   /// /* 图片名字 */
	   xtitle(每周收入)   ///
       ytitle(每周家庭食物花费)
* 还有更多的画图内容可以学习,图片的保存等也可以直接点击图片操作

2. 简单OLS回归(最小二乘法)

* food_ex = coef * income + ... 对income进行回归
regress food_exp income
* 计算y的拟合值,这里的y是food_exp'; xb是计算线性拟合值
predict yhat, xb  //calculate linear prediction
* 计算残差项的拟合值
predict ehat, residuals 
browse
* 做预测,预测其他的收入情况在该模型中的食物支出
* 例如,预测家庭每周收入2000$的家庭,每周食物支出
set obs 41 //本数据有40个观测值,我们多加一个观测值,但是没有定义具体观测值内容,它目前是缺失
replace income = 20 in 41 //将收入第41个观测值替换成20百
predict yhat1, xb
list yhat1 in 41
* 保存dta文件
* 直接点save菜单,或者输入下面命令
save "newfood.dta", replace

三、二次式模型

y = β 1 + β 2 ∗ x 2 + e y=\beta _1+ \beta_2*x^2 + e y=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值