本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。
为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。
由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。
在两条独立的水平线上按给定的顺序写下 nums1
和 nums2
中的整数。
现在,可以绘制一些连接两个数字 nums1[i]
和 nums2[j]
的直线,这些直线需要同时满足:
nums1[i] == nums2[j]
- 且绘制的直线不与任何其他连线(非水平线)相交。
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。
以这种方法绘制线条,并返回可以绘制的最大连线数。
示例 1:
输入:nums1 = [1,4,2], nums2 = [1,2,4]
输出:2
解释:可以画出两条不交叉的线,如上图所示。
但无法画出第三条不相交的直线,因为从 nums1[1]=4 到 nums2[2]=4 的直线将与从 nums1[2]=2 到 nums2[1]=2 的直线相交。
示例 2:
输入:nums1 = [2,5,1,2,5], nums2 = [10,5,2,1,5,2]
输出:3
示例 3:
输入:nums1 = [1,3,7,1,7,5], nums2 = [1,9,2,5,1]
输出:2
提示:
1 <= nums1.length, nums2.length <= 500
1 <= nums1[i], nums2[j] <= 2000
解法 动态规划
给定两个数组
n
u
m
s
1
nums_1
nums1 和
n
u
m
s
2
nums_2
nums2 ,当
n
u
m
s
1
[
i
]
=
n
u
m
s
2
[
j
]
nums_1[i]=nums_2[j]
nums1[i]=nums2[j] 时,可以用一条直线连接
n
u
m
s
1
[
i
]
nums_1[i]
nums1[i] 和
n
u
m
s
2
[
j
]
nums_2[j]
nums2[j] 。假设一共绘制了
k
k
k 条互不相交的直线,其中第
x
x
x 条直线连接
n
u
m
s
1
[
i
x
]
nums_1[i_x]
nums1[ix] 和
n
u
m
s
2
[
j
x
]
nums_2[j_x]
nums2[jx]
,则对于任意
1
≤
x
≤
k
1≤x≤k
1≤x≤k 都有
n
u
m
s
1
[
i
x
]
=
n
u
m
s
2
[
j
x
]
nums_1[i_x]=nums_2[j_x]
nums1[ix]=nums2[jx] ,其中
i
1
<
i
2
<
…
<
i
k
i_1 <i_2 <…<i_k
i1<i2<…<ik ,
j
1
<
j
2
<
…
<
j
k
j_1 <j_2 < \dots <j_k
j1<j2<…<jk 。
上述
k
k
k 条互不相交的直线分别连接了数组
n
u
m
s
1
nums_1
nums1 和
n
u
m
s
2
nums_2
nums2 的
k
k
k 对相等的元素,而且这
k
k
k 对相等的元素在两个数组中的相对顺序是一致的,因此,这
k
k
k 对相等的元素组成的序列即为数组
n
u
m
s
1
nums_1
nums1
和
n
u
m
s
2
nums_2
nums2 的公共子序列。要计算可以绘制的最大连线数,即为计算数组
n
u
m
s
1
nums_1
nums1 和
n
u
m
s
2
nums_2
nums2 的最长公共子序列的长度。最长公共子序列问题是典型的二维动态规划问题。
假设数组 n u m s 1 nums_1 nums1 和 n u m s 2 nums_2 nums2 的长度分别为 m m m 和 n n n ,创建 m + 1 m+1 m+1 行 n + 1 n+1 n+1 列的二维数组 d p dp dp ,其中 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示 n u m s 1 [ 0 : i ] nums_1[0:i] nums1[0:i] 和 n u m s 2 [ 0 : j ] nums_2[0:j] nums2[0:j] 的最长公共子序列的长度。
上述表示中, n u m s 1 [ 0 : i ] nums_1[0:i] nums1[0:i] 表示数组 n u m s 1 nums_1 nums1 的长度为 i i i 的前缀, n u m s 2 [ 0 : j ] nums_2[0:j] nums2[0:j] 表示数组 n u m s 2 nums_2 nums2 的长度为 j j j 的前缀。
考虑动态规划的边界情况:
- 当 i = 0 i=0 i=0 时, n u m s 1 [ 0 : i ] nums_1[0:i] nums1[0:i] 为空,空数组和任何数组的最长公共子序列的长度都是 0 0 0 ,因此对任意 0 ≤ j ≤ n 0≤j≤n 0≤j≤n ,有 d p [ 0 ] [ j ] = 0 dp[0][j]=0 dp[0][j]=0 ;
- 当 j = 0 j=0 j=0 时, n u m s 2 [ 0 : j ] nums_2[0:j] nums2[0:j] 为空,同理可得,对任意 0 ≤ i ≤ m 0≤i≤m 0≤i≤m ,有 d p [ i ] [ 0 ] = 0 dp[i][0]=0 dp[i][0]=0 。
因此动态规划的边界情况是:当 i = 0 i=0 i=0 或 j = 0 j=0 j=0 时, d p [ i ] [ j ] = 0 dp[i][j]=0 dp[i][j]=0 。
当 i > 0 i>0 i>0 且 j > 0 j>0 j>0 时,考虑 d p [ i ] [ j ] dp[i][j] dp[i][j] 的计算:
- 当 n u m s 1 [ i − 1 ] = n u m s 2 [ j − 1 ] nums_1[i−1]=nums_2[j−1] nums1[i−1]=nums2[j−1] 时,将这两个相同的元素称为公共元素,考虑 n u m s 1 [ 0 : i − 1 ] nums_1[0:i−1] nums1[0:i−1] 和 n u m s 2 [ 0 : j − 1 ] nums_2[0:j−1] nums2[0:j−1] 的最长公共子序列,再增加一个元素(即公共元素)即可得到 n u m s 1 [ 0 : i ] nums_1[0:i] nums1[0:i] 和 n u m s 2 [ 0 : j ] nums_2[0:j] nums2[0:j] 的最长公共子序列,因此 d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1 dp[i][j]=dp[i−1][j−1]+1 dp[i][j]=dp[i−1][j−1]+1 。
- 当
n
u
m
s
1
[
i
−
1
]
≠
n
u
m
s
2
[
j
−
1
]
nums_1[i−1] \ne nums_2[j−1]
nums1[i−1]=nums2[j−1] 时,考虑以下两项:
- n u m s 1 [ 0 : i − 1 ] nums_1[0:i−1] nums1[0:i−1] 和 n u m s 2 [ 0 : j ] nums_2[0:j] nums2[0:j] 的最长公共子序列;
- n u m s 1 [ 0 : i ] nums_1[0:i] nums1[0:i] 和 n u m s 2 [ 0 : j − 1 ] nums_2[0:j−1] nums2[0:j−1] 的最长公共子序列。
- 要得到 n u m s 1 [ 0 : i ] nums_1[0:i] nums1[0:i] 和 n u m s 2 [ 0 : j ] nums_2[0:j] nums2[0:j] 的最长公共子序列,应取两项中的长度较大的一项,因此 d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) dp[i][j]=max(dp[i−1][j],dp[i][j−1]) dp[i][j]=max(dp[i−1][j],dp[i][j−1]) 。
由此可以得到如下状态转移方程:
d
p
[
i
]
[
j
]
=
{
d
p
[
i
−
1
]
[
j
−
1
]
+
1
,
n
u
m
s
1
[
i
−
1
]
=
n
u
m
s
2
[
j
−
1
]
max
(
d
p
[
i
−
1
]
[
j
]
,
d
p
[
i
]
[
j
−
1
]
)
,
n
u
m
s
1
[
i
−
1
]
≠
n
u
m
s
2
[
j
−
1
]
dp[i][j]=\begin{cases} dp[i−1][j−1]+1, \quad &nums_1[i-1] = nums_2[j-1] \\ \max(dp[i−1][j],dp[i][j−1]), \quad &nums_1[i-1] \ne nums_2[j-1] \end{cases}
dp[i][j]={dp[i−1][j−1]+1,max(dp[i−1][j],dp[i][j−1]),nums1[i−1]=nums2[j−1]nums1[i−1]=nums2[j−1]
最终计算得到
d
p
[
m
]
[
n
]
dp[m][n]
dp[m][n] 即为数组
n
u
m
s
1
nums_1
nums1 和
n
u
m
s
2
nums_2
nums2 的最长公共子序列的长度,即可以绘制的最大连线数。
class Solution {
public int maxUncrossedLines(int[] nums1, int[] nums2) {
int m = nums1.length, n = nums2.length;
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
return dp[m][n];
}
}
class Solution {
public:
int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size(), n = nums2.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (nums1[i] == nums2[j]) dp[i + 1][j + 1] = dp[i][j] + 1;
else dp[i + 1][j + 1] = max(dp[i + 1][j], dp[i][j + 1]);
}
}
return dp[m][n];
}
};
var maxUncrossedLines = function(nums1, nums2) {
const m = nums1.length, n = nums2.length;
const dp = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
for (let i = 1; i <= m; i++) {
const num1 = nums1[i - 1];
for (let j = 1; j <= n; j++) {
const num2 = nums2[j - 1];
if (num1 === num2) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[m][n];
};
func maxUncrossedLines(nums1, nums2 []int) int {
m, n := len(nums1), len(nums2)
dp := make([][]int, m+1)
for i := range dp {
dp[i] = make([]int, n+1)
}
for i, v := range nums1 {
for j, w := range nums2 {
if v == w {
dp[i+1][j+1] = dp[i][j] + 1
} else {
dp[i+1][j+1] = max(dp[i][j+1], dp[i+1][j])
}
}
}
return dp[m][n]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
class Solution:
def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
m, n = len(nums1), len(nums2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i, num1 in enumerate(nums1):
for j, num2 in enumerate(nums2):
if num1 == num2:
dp[i + 1][j + 1] = dp[i][j] + 1
else:
dp[i + 1][j + 1] = max(dp[i][j + 1], dp[i + 1][j])
return dp[m][n]
int maxUncrossedLines(int* nums1, int nums1Size, int* nums2, int nums2Size) {
int m = nums1Size, n = nums2Size;
int dp[m + 1][n + 1];
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= m; i++) {
int num1 = nums1[i - 1];
for (int j = 1; j <= n; j++) {
int num2 = nums2[j - 1];
if (num1 == num2) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = fmax(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[m][n];
}
public class Solution {
public int MaxUncrossedLines(int[] nums1, int[] nums2) {
int m = nums1.Length, n = nums2.Length;
int[,] dp = new int[m + 1, n + 1];
for (int i = 1; i <= m; i++) {
int num1 = nums1[i - 1];
for (int j = 1; j <= n; j++) {
int num2 = nums2[j - 1];
if (num1 == num2) {
dp[i, j] = dp[i - 1, j - 1] + 1;
} else {
dp[i, j] = Math.Max(dp[i - 1, j], dp[i, j - 1]);
}
}
}
return dp[m, n];
}
}
复杂度分析:
- 时间复杂度: O ( m n ) O(mn) O(mn) ,其中 m 和 n 分别是数组 n u m s 1 nums_1 nums1 和 n u m s 2 nums_2 nums2 的长度。二维数组 d p dp dp 有 m + 1 m+1 m+1 行和 n + 1 n+1 n+1 列,需要对 d p dp dp 中的每个元素进行计算。
- 空间复杂度: O ( m n ) O(mn) O(mn) 。