LeetCode 213. House Robber II【动态规划(环形)】简单

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2, 因为他们是相邻的。

示例 2:

输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4

示例 3:

输入:nums = [1,2,3]
输出:3

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 1000

解法 动态规划

这道题是「198. 打家劫舍」的进阶,和第 198 题的不同之处是,这道题中的房屋是首尾相连的,第一间房屋和最后一间房屋相邻,因此第一间房屋和最后一间房屋不能在同一晚上偷窃。和第 198 题相似,这道题也可以使用动态规划解决。

首先考虑最简单的情况。如果只有一间房屋,则偷窃该房屋,可以偷窃到最高总金额。如果只有两间房屋,则由于两间房屋相邻,不能同时偷窃,只能偷窃其中的一间房屋,因此选择其中金额较高的房屋进行偷窃,可以偷窃到最高总金额。注意到当房屋数量不超过两间时,最多只能偷窃一间房屋,因此不需要考虑首尾相连的问题。如果房屋数量大于两间,就必须考虑首尾相连的问题,第一间房屋和最后一间房屋不能同时偷窃。

如何才能保证第一间房屋和最后一间房屋不同时偷窃呢?如果偷窃了第一间房屋,则不能偷窃最后一间房屋,因此偷窃房屋的范围是第一间房屋到最后第二间房屋如果偷窃了最后一间房屋,则不能偷窃第一间房屋,因此偷窃房屋的范围是第二间房屋到最后一间房屋

考虑是否偷 n u m s [ 0 ] nums[0] nums[0]

  • 如果偷 n u m s [ 0 ] nums[0] nums[0] ,那么 n u m s [ 1 ] nums[1] nums[1] n u m s [ n − 1 ] nums[n-1] nums[n1] 不能偷,问题变成从 n u m s [ 2 ] nums[2] nums[2] n u m s [ n − 2 ] nums[n-2] nums[n2] 的非环形版本。这里官方题解计算的是 n u m s [ 0 ] nums[0] nums[0] n u m s [ n − 2 ] nums[n-2] nums[n2] ,不如直接求 n u m s [ 2 ] nums[2] nums[2] n u m s [ n − 2 ] nums[n-2] nums[n2]
  • 如果不偷 n u m s [ 0 ] nums[0] nums[0],那么问题变成从 n u m s [ 1 ] nums[1] nums[1] n u m s [ n − 1 ] nums[n-1] nums[n1] 的非环形版本。

这两种方案覆盖了所有情况(毕竟 n u m s [ 0 ] nums[0] nums[0] 只有偷与不偷,没有第三种选择),所以取两种方案的最大值,即为答案。

class Solution {
    // 198. 打家劫舍
    int rob1(vector<int> &nums, int start, int end) { // [start,end) 左闭右开
        int f0 = 0, f1 = 0;
        for (int i = start; i < end; ++i) {
            int new_f = max(f1, f0 + nums[i]);
            f0 = f1;
            f1 = new_f;
        }
        return f1;
    }
public:
    int rob(vector<int> &nums) {
        int n = nums.size();
        return max(nums[0] + rob1(nums, 2, n - 1), rob1(nums, 1, n));
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值