【离散数学】数理逻辑 第一章 命题逻辑(7) 命题逻辑的推理理论

本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:

  • 离散数学及其应用 第七版 Discrete Mathematics and Its Applications 7th ,作者是 Kenneth H.Rosen
  • 离散数学 第二版,武波等编著,西安电子科技大学出版社

数理逻辑的显著特征就是符号化形式化


7. 命题逻辑的推理理论

在现实生活和科学研究中,经常要进行推理 reasoning ,即从某些假设 hypothesis 或者前提 premises 出发,使用某些公认的规则和已知的公理 axiom定理 theorem引理 lemma推论 corollary 等进行逻辑推演,从而形成结论 conclusion 。少数推理很简单,但大多数结论需要经过复杂的推演过程才能得到。

名词释义:

  1. 定义 Definition ——a precise and unambiguous description of the meaning of a mathematical term. It characterizes the meaning of a word by giving all the properties and only those properties that must be true.
  2. 定理 Theorem , 本身是一个大result ——a mathematical statement that is proved using rigorous mathematical reasoning. In a mathematical paper, the term theorem is often reserved for the most important results.
  3. 引理 Lemma ,证明定理之前用的一个result——a minor result whose sole purpose is to help in proving a theorem. It is a stepping stone on the path to proving a theorem. Very occasionally lemmas can take on a life of their own (Zorn’s lemma, Urysohn’s lemma, Burnside’s lemma,Sperner’s lemma).
  4. 推论Corollary ,可以从定理中直接deduce/prove出来的result——-a result in which the (usually short) proof relies heavily on a given theorem (we often say that \this is a corollary of Theorem A").
  5. 命题 Proposition ,一个还无法大到变成定理的小result(当作小定理),算是比较简单的定理的一种称呼——-a proved and often interesting result, but generally less important than a theorem.
  6. 猜想 Conjecture ——a statement that is unproved, but is believed to be true (Collatz conjecture, Goldbach conjecture, twin prime conjecture).
  7. 断言 Claim ,证明时先论述一个结果再作证明,让看的人比较轻松——-an assertion that is then proved. It is often used like an informal lemma.
  8. 公理/假定 Axiom/Postulate ——a statement that is assumed to be true without proof. These are the basic building blocks from which all theorems are proved (Eu-clid’s ve postulates, Zermelo-Frankel axioms, Peano axioms).
  9. 恒等式 Identity ——-a mathematical expression giving the equality of two (often variable) quantities (trigonometric identities, Euler’s identity).
  10. 悖论 Paradox ——a statement that can be shown, using a given set of axioms and de nitions, to be both true and false. Paradoxes are often used to show the inconsistencies in a awed theory (Russell’s paradox). The term paradox is often used informally to describe a surprising or counterintuitive result that follows from a given set of rules (Banach-Tarski paradox, Alabama paradox, Gabriel’s horn).

它们的作用:

  • 首先,定义和公理是任何理论的基础,定义解决了概念的范畴,公理使得理论能够被人的理性所接受。
  • 其次,定理和命题是在定义和公理的基础上,通过理性的加工得到的理论的再延伸。区别主要在于,定理的理论高度比命题高些,定理主要描述各定义(范畴)间的逻辑关系,命题一般描述的是某种对应关系(非范畴性的)。推论则是某一定理的附属品,是该定理的简单应用
  • 最后,引理就是在证明某一定理时,所必须用到的其它定理。而在一般情况下,(如前面所提到的)定理的证明是依赖于定义和公理的。
    如果为了论证一个问题,但是在论证前需要证明若干个小问题,那么这若干个小问题的结论就是引理,该问题的论证需要用到前面的引理,结论就是定理。即引理是为定理作准备的,文中的定理才是需要说明的主要问题或者目的。
    我们应该根据文章目的的不同来区分引理和定理,同样的论点在这篇文章可以是引理,在那篇文章则可以是定理。

定义7.1 H 1 , H 2 , … , H n H_1, H_2, \dots, H_n H1,H2,,Hn C C C 是命题公式,若 H 1 ∧ H 2 ∧ ⋯ ∧ H n ⇒ C H_1 \land H_2 \land \dots \land H_n \Rightarrow C H1H2HnC(或简写为 H 1 , H 2 , … , H n ⇒ C H_1, H_2, \dots, H_n \Rightarrow C H1,H2,,HnC),则称 C C C 是一组前提 premises H 1 , H 2 , … , H n H_1, H_2, \dots, H_n H1,H2,,Hn有效结论 valid conclusion ,或称 C C C 可由前提 H 1 , H 2 , … , H n H_1, H_2, \dots, H_n H1,H2,,Hn 逻辑推出。从前提 H 1 , H 2 , … , H n H_1, H_2, \dots, H_n H1,H2,,Hn 推出结论的过程,称为推理 reasoning论证 argument证明 proof

要注意的是,如果 H 1 ∧ H 2 ∧ ⋯ ∧ H n ⇒ C H_1 \land H_2 \land \dots \land H_n \Rightarrow C H1H2HnC ,说明 H 1 , H 2 , … , H n H_1, H_2, \dots, H_n H1,H2,,Hn 可以逻辑推出 C C C ,即推理是正确的,但是推理正确不保证结论 C C C 一定正确!更准确的说,结论的真假取决于前提 H 1 ∧ H 2 ∧ ⋯ ∧ H n H_1 \land H_2 \land \dots \land H_n H1H2Hn 的真假——前提为真时结论 C C C 为真,前提为假时结论 C C C 可能为真、可能为假。

7.1 重要推理规则

【离散数学】数理逻辑 第一章 命题逻辑(3) 逻辑等价与蕴含中列出的等价公式和蕴含公式,都可以作为推理规则使用。此外在推理中,还有两条常用的重要推理规则:

  • P规则:在推理过程中,前提可以在任何步骤引入
  • T规则:在推理过程中,如果由已经推出的一个或多个公式蕴含(或等价于 S S S ,则公式 S S S 可以引入到推理过程中

判断结论是否有效有多种不同的方法,下面介绍一些常用的证明方法:

  • 方法1:无义证明法。(利用条件联结词的特性)如果能够证明 P P P 恒为假,则有 P → Q P \to Q PQ 恒为真,即 P ⇒ Q P \Rightarrow Q PQ
  • 方法2:平凡证明法。(利用条件联结词的特性)如果能够证明 Q Q Q 恒为真,则有 P → Q P \to Q PQ 恒为真,即 P ⇒ Q P \Rightarrow Q PQ
  • 方法3:直接证明法。从一组前提出发,利用公认的推理规则(列出的等价公式、蕴含公式、它们具有的替换规则和传递规则、P规则、T规则),逻辑演绎得到有效结论。将在后文详细介绍。
  • 方法4:归谬法,又称反证法。将在后文详细介绍(有点类似证明永真蕴含式否定后件法)。
  • 方法5:CP规则法,又称附加规则法。将在后文详细介绍。

无义证明法和平凡证明法应用的次数较少,但
对有限的或特殊的情况,它们常常是重要的。下面重点讲解直接证明法、归谬法和CP规则法。


7.2 直接证明法

采用直接证明法证明 H 1 , H 2 , … , H n ⇒ C H_1, H_2, \dots, H_n\Rightarrow C H1,H2,,HnC 的过程,等价于构造一个公式序列 A 1 , A 2 , … , A m A_1, A_2, \dots, A_m A1,A2,,Am ,使其满足:

  • A m = C A_m = C Am=C
  • 对每个 A i   ( i = 1 , 2 , … , m ) A_i\ (i = 1, 2, \dots, m) Ai (i=1,2,,m) ,或者 A i = H j   ( 1 ≤ j ≤ n ) A_i = H_j\ (1\le j \le n) Ai=Hj (1jn),即由P规则得到;或者存在 A i 1 , A i 2 , … , A i k   ( 1 ≤ i 1 < i 2 < ⋯ < i k ≤ i − 1 ) A_{i_1}, A_{i_2}, \dots, A_{i_k}\ (1 \le i_1 \lt i2 \lt \dots \lt i_k \le i - 1) Ai1,Ai2,,Aik (1i1<i2<<iki1) 、且 A i 1 ∧ A i 2 ∧ ⋯ ∧ A i k ⇒ A i A_{i_1} \land A_{i_2} \land \dots \land A_{i_k} \Rightarrow A_i Ai1Ai2AikAi(运用常见的永真蕴含式)或 A i 1 ∧ A i 2 ∧ ⋯ ∧ A i k ⇔ A i A_{i_1} \land A_{i_2} \land \dots \land A_{i_k} \Leftrightarrow A_i Ai1Ai2AikAi(运用常见的逻辑等价式),即由T规则得到。

在后文中我们会看到,直接证明法是归谬法和CP规则法的基础,归谬法只不过是使用了结论的否定作为假设前提,CP规则法则使用结论的前件作为附加前提,实际证明过程还是要用直接证明法。

有直接证明法就有间接证明法。利用逆反律,要证明 P ⇒ Q P \Rightarrow Q PQ ,可以间接证明 ¬ Q ⇒ ¬ P \lnot Q \Rightarrow \lnot P ¬Q¬P 。这一证明方法常用于直接证明较为困难的时候,正难则反

例1:证明 ( P ∨ Q ) ∧ ( P → R ) ∧ ( Q → S ) ⇒ S ∨ R (P \lor Q) \land (P \to R) \land (Q \to S) \Rightarrow S \lor R (PQ)(PR)(QS)SR(构造性二难推理)。
解答:
( 1 )   P ∨ Q P ( 2 )   ¬ P → Q T , ( 1 ) , 蕴 含 律 ( 3 )   Q → S P ( 4 )   ¬ P → S T , ( 2 ) , ( 3 ) , 前 提 三 段 论 ( 5 )   ¬ S → P T , ( 4 ) , 逆 反 律 ( 6 )   P → R P ( 7 )   ¬ S → R T , ( 5 ) , ( 6 ) , 前 提 三 段 论 ( 8 )   S ∨ R T , ( 7 ) , 蕴 含 律 \begin{aligned} &(1)\ P \lor Q &\quad P\\ &(2)\ \lnot P \to Q &\quad T, (1), \mathtt{蕴含律}\\ &(3)\ Q \to S &\quad P \\ &(4)\ \lnot P \to S &\quad T, (2),(3),\mathtt{前提三段论}\\ &(5)\ \lnot S\to P &\quad T, (4), \mathtt{逆反律}\\ &(6)\ P \to R &\quad P\\ &(7)\ \lnot S \to R &\quad T,(5),(6),前提三段论\\ &(8)\ S \lor R &\quad T, (7), 蕴含律 \end{aligned} (1) PQ(2) ¬PQ(3) QS(4) ¬PS(5) ¬SP(6) PR(7) ¬SR(8) SRPT,(1),PT,(2),(3),T,(4),PT,(5),(6),T,(7),

例2:侦查员在调查了某珠宝店的珠宝失窃案现场以及询问了人证后,得到以下事实:
(a)是营业员甲或营业员乙作案。
(b)若是甲作案,则案发在非营业时间。
(c)若乙提供的证词可信,则案发时货柜未上锁。
(d)若乙提供的证词不可信,则案发在营业时间。
(e)货柜在案发时上锁了。
侦查员推理出是营业员乙作案,请判定该判断是否正确。
解答:设 P P P:是营业员甲作的案, Q Q Q:是营业员乙作的案, R R R:案发在营业时间, S S S:乙提供的证词可信, H H H:货柜在案发时上锁了。于是问题等价于,验证 ( P ∨ Q ) ∧ ( P → ¬ R ) ∧ ( S → ¬ H ) ∧ ( ¬ S → R ) ∧ H ⇒ Q (P\lor Q) \land (P \to \lnot R) \land (S \to \lnot H) \land (\lnot S \to R) \land H \Rightarrow Q (PQ)(P¬R)(S¬H)(¬SR)HQ 是否成立。形式推理过程如下:
( 1 )   ¬ S → R P ( 2 )   ¬ R → S T , ( 1 ) , 逆 反 律 ( 3 )   P → ¬ R P ( 4 )   P → S T , ( 2 ) , ( 3 ) , 前 提 三 段 论 ( 5 )   S → ¬ H P ( 6 )   H → ¬ S T , ( 5 ) , 前 提 三 段 论 ( 7 )   H P ( 8 )   ¬ S T , ( 6 ) , ( 7 ) , 假 言 推 理 ( 9 )   ¬ S → ¬ P T , ( 4 ) , 逆 反 律 ( 10 )   ¬ P T , ( 8 ) , ( 9 ) , 假 言 推 理 ( 11 )   P ∨ Q P ( 12 )   Q T , ( 10 ) , ( 11 ) , 析 取 三 段 论 \begin{aligned} &(1)\ \lnot S \to R &\quad P \\ &(2)\ \lnot R \to S &\quad T, (1), 逆反律\\ &(3)\ P \to \lnot R &\quad P\\ &(4)\ P \to S &\quad T, (2), (3), 前提三段论 \\ &(5)\ S \to \lnot H &\quad P \\ &(6)\ H \to \lnot S &\quad T, (5), 前提三段论 \\ &(7)\ H &\quad P \\ &(8)\ \lnot S &\quad T, (6), (7), 假言推理 \\ &(9)\ \lnot S \to \lnot P &\quad T, (4), 逆反律\\ &(10)\ \lnot P &\quad T, (8), (9), 假言推理\\ &(11)\ P \lor Q &\quad P\\ &(12)\ Q &\quad T, (10), (11), 析取三段论 \end{aligned} (1) ¬SR(2) ¬RS(3) P¬R(4) PS(5) S¬H(6) H¬S(7) H(8) ¬S(9) ¬S¬P(10) ¬P(11) PQ(12) QPT,(1),PT,(2),(3),PT,(5),PT,(6),(7),T,(4),T,(8),(9),PT,(10),(11),
因此侦查员的推理是正确的。


7.3 归谬法(假设前提)

定义7.2 P 1 , P 2 , … , P n P_1, P_2, \dots, P_n P1,P2,,Pn 是命题公式 H 1 , H 2 , … , H m H_1, H_2, \dots, H_m H1,H2,,Hm 中的所有命题变元,如果存在 P 1 , P 2 , … , P n P_1, P_2, \dots, P_n P1,P2,,Pn 的一种赋值,使得 H 1 ∧ H 2 ∧ ⋯ ∧ H m H_1 \land H_2 \land \dots \land H_m H1H2Hm 的真值为 T T T ,则称命题公式集合 { H 1 , H 2 , … , H m } \{ H_1, H_2, \dots, H_m\} {H1,H2,,Hm}一致的相容的,否则称为不一致的不相容的

因为当 { H 1 , H 2 , … , H m } \{ H_1, H_2, \dots, H_m \} {H1,H2,,Hm} 不相容时, H 1 ∧ H 2 ∧ ⋯ ∧ H m H_1\land H_2 \land \dots \land H_m H1H2Hm 的真值恒为 F F F ,所以定义7.2等价于:设 H 1 , H 2 , … , H m H_1, H_2, \dots, H_m H1,H2,,Hm 是公式,若存在公式 R R R 使得 H 1 , H 2 , … , H m ⇒ R ∧ ¬ R   ( ⇒ F ) H_1, H_2, \dots, H_m \Rightarrow R \land \lnot R\ (\Rightarrow F) H1,H2,,HmR¬R (F) ,则称命题公式集合 { H 1 , H 2 , … , H m } \{ H_1, H_2, \dots, H_m\} {H1,H2,,Hm}不一致的不相同的,否则称为一致的相容的

定理7.1 H 1 , H 2 , … , H m , C H_1, H_2, \dots, H_m, C H1,H2,,Hm,C 是公式,如果存在公式 R R R 使得 H 1 , H 2 , … , H m , ¬ C ⇒ R ∧ ¬ R H_1, H_2, \dots, H_m, \lnot C \Rightarrow R \land \lnot R H1,H2,,Hm,¬CR¬R ,则有 H 1 , H 2 , … , H m ⇒ C H1, H2, \dots, H_m \Rightarrow C H1,H2,,HmC

证明:设 H 1 , H 2 , … , H m , ¬ C ⇒ R ∧ ¬ R H_1, H_2, \dots, H_m, \lnot C \Rightarrow R \land \lnot R H1,H2,,Hm,¬CR¬R(即为永假式),则 { H 1 , H 2 , … , H m , ¬ C } \{ H_1, H_2, \dots, H_m, \lnot C\} {H1,H2,,Hm,¬C} 是不一致的。根据不一致的定义(和肯定前件法),设 H 1 ∧ H 2 ∧ ⋯ ∧ H m H_1 \land H_2 \land \dots \land H_m H1H2Hm 为真,由于在任何使 H 1 ∧ H 2 ∧ ⋯ ∧ H m H_1 \land H_2 \land \dots \land H_m H1H2Hm 为真的赋值下,均有 ¬ C \lnot C ¬C 为假,即 C C C 为真,所以 H 1 ∧ H 2 ⋯ ∧ H m → C H_1 \land H_2 \dots \land H_m \to C H1H2HmC 为重言式,故有 H 1 ∧ H 2 ∧ … H m ⇒ C H_1 \land H_2 \land \dots H_m \Rightarrow C H1H2HmC 。因此 H 1 , H 2 , … , H m ⇒ C H_1, H_2, \dots , H_m \Rightarrow C H1,H2,,HmC

这一定理说明,为了从一组前提 H 1 , H 2 , … , H m H_1, H_2, \dots, H_m H1,H2,,Hm 推出结论 C C C ,将结论 C C C 加以否定,把 H 1 , H 2 , … , H m , ¬ C H_1, H_2, \dots, H_m, \lnot C H1,H2,,Hm,¬C 作为前提,利用直接证明法推出矛盾,比如 R ∧ ¬ R R \land \lnot R R¬R ,即可得证 C C C 。这种证明方法被称为归谬法反证法 proof by contradiction ,其中 ¬ C \lnot C ¬C假设前提

例3:证明 A → B ,   ¬ ( B ∨ C ) A \to B,\ \lnot (B \lor C) AB, ¬(BC) 可推出 ¬ A \lnot A ¬A
解答:
( 1 )   A P ( 假 设 前 提 ) ( 2 )   A → B P ( 3 )   B T , ( 1 ) , ( 2 ) , 假 言 推 理 ( 4 )   ¬ ( B ∨ C ) P ( 5 )   ¬ B ∧ ¬ C T , ( 4 ) , 德 摩 根 律 ( 6 )   ¬ B T , ( 5 ) , 化 简 式 ( 7 )   B ∧ ¬ B ( 矛 盾 ) T , ( 3 ) , ( 6 ) , 直 推 式 \begin{aligned} &(1)\ A &\quad P(假设前提)\\ &(2)\ A \to B &\quad P\\ &(3)\ B &\quad T,(1),(2), 假言推理 \\ &(4)\ \lnot (B \lor C) &\quad P\\ &(5)\ \lnot B\land \lnot C &\quad T, (4), 德摩根律\\ &(6)\ \lnot B &\quad T, (5), 化简式\\ &(7)\ B\land \lnot B(矛盾) &\quad T,(3), (6), 直推式\\ \end{aligned} (1) A(2) AB(3) B(4) ¬(BC)(5) ¬B¬C(6) ¬B(7) B¬B()P()PT,(1),(2),PT,(4),T,(5),T,(3),(6),

例4:证明 ( P ∨ Q ) ∧ ( P → R ) ∧ ( Q → S ) ⇒ S ∨ R (P \lor Q) \land (P \to R) \land (Q\to S) \Rightarrow S \lor R (PQ)(PR)(QS)SR(构造性二难推理)。
解答:
( 1 )   ¬ ( S ∨ R ) P ( 假 设 前 提 ) ( 2 )   ¬ S ∧ ¬ R T , ( 1 ) , 德 摩 根 律 ( 3 )   ¬ S T , ( 2 ) , 化 简 式 ( 4 )   Q → S P ( 5 )   ¬ Q T , ( 3 ) , ( 4 ) , 拒 取 式 ( 6 )   ¬ R T , ( 2 ) , 化 简 式 ( 7 )   P → R P ( 8 )   ¬ P T , ( 6 ) , ( 7 ) , 拒 取 式 ( 9 )   ¬ P ∧ ¬ Q T , ( 5 ) , ( 8 ) , 直 推 式 ( 10 )   ¬ ( P ∨ Q ) T , ( 9 ) , 德 摩 根 律 ( 11 )   P ∨ Q P ( 12 )   ( P ∨ Q ) ∧ ¬ ( P ∨ Q ) ( 矛 盾 ) T , ( 10 ) , ( 11 ) , 直 推 式 \begin{aligned} &(1)\ \lnot (S \lor R) &\quad P(假设前提)\\ &(2)\ \lnot S \land \lnot R &\quad T,(1),德摩根律 \\ &(3)\ \lnot S &\quad T,(2),化简式\\ &(4)\ Q \to S &\quad P \\ &(5)\ \lnot Q &\quad T, (3), (4),拒取式 \\ &(6)\ \lnot R &\quad T,(2), 化简式 \\ &(7)\ P\to R &\quad P\\ &(8)\ \lnot P &\quad T, (6),(7),拒取式\\ &(9)\ \lnot P \land \lnot Q &\quad T,(5),(8),直推式 \\ &(10)\ \lnot (P \lor Q) &\quad T, (9), 德摩根律\\ &(11)\ P\lor Q &\quad P \\ &(12)\ (P \lor Q) \land \lnot (P \lor Q)(矛盾) &\quad T, (10), (11), 直推式\\ \end{aligned} (1) ¬(SR)(2) ¬S¬R(3) ¬S(4) QS(5) ¬Q(6) ¬R(7) PR(8) ¬P(9) ¬P¬Q(10) ¬(PQ)(11) PQ(12) (PQ)¬(PQ)()P()T,(1),T,(2),PT,(3),(4),T,(2),PT,(6),(7),T,(5),(8),T,(9),PT,(10),(11),


7.4 CP规则法(附加前提)

H 1 , H 2 , … , H m , R , C H_1, H_2, \dots, H_m, R, C H1,H2,,Hm,R,C 是命题公式,根据输出律 E 22 E_{22} E22 可知:
( H 1 ∧ H 2 ∧ ⋯ ∧ H m ∧ R ) → C ⇔ ( H 1 ∧ H 2 ∧ ⋯ ∧ H m ) → ( R → C ) (H_1 \land H_2 \land \dots \land H_m \land R) \to C \Leftrightarrow (H_1 \land H_2 \land \dots \land H_m) \to (R \to C) (H1H2HmR)C(H1H2Hm)(RC)

因此,如果能证明 H 1 , H 2 , … , H m , R ⇒ C H_1, H_2, \dots, H_m, R \Rightarrow C H1,H2,,Hm,RC ,则有 H 1 , H 2 , … , H m ⇒ R → C H_1, H_2, \dots, H_m \Rightarrow R \to C H1,H2,,HmRC 成立。

于是,为了证明 H 1 ∧ H 2 ∧ ⋯ ∧ H m ⇒ R → C H_1 \land H_2 \land \dots \land H_m \Rightarrow R \to C H1H2HmRC ,可以使用间接的方法——将结论的前件 R R R 作为附加前提,通过直接证明 H 1 ∧ H 2 ∧ ⋯ ∧ H m ∧ R ⇒ C H_1 \land H_2 \land \dots \land H_m \land R \Rightarrow C H1H2HmRC ,就能得到 H 1 ∧ H 2 ∧ ⋯ ∧ H m ⇒ R → C H_1 \land H_2 \land \dots \land H_m \Rightarrow R \to C H1H2HmRC 。这种证明方法被称为CP规则,其中 R R R附加前提

例5:证明 A → ( B → C ) ,   ¬ D ∨ A ,   B A \to (B\to C),\ \lnot D \lor A,\ B A(BC), ¬DA, B 可推出 D → C D \to C DC
解答:应用CP规则法:
( 1 )   D P ( 附 加 前 提 ) ( 2 )   ¬ D ∨ A P ( 3 )   A T , ( 1 ) , ( 2 ) , 析 取 三 段 论 ( 4 )   A → ( B → C ) P ( 5 )   B → C T , ( 3 ) , ( 4 ) , 假 言 推 理 ( 6 )   B P ( 7 )   C T , ( 5 ) , ( 6 ) , 假 言 推 理 ( 8 )   D → C C P 规 则 \begin{aligned} &(1)\ D &\quad P(附加前提)\\ &(2)\ \lnot D \lor A &\quad P\\ &(3)\ A &\quad T, (1), (2), 析取三段论\\ &(4)\ A \to (B \to C) &\quad P\\ &(5)\ B\to C &\quad T, (3), (4), 假言推理\\ &(6)\ B&\quad P \\ &(7)\ C &\quad T,(5), (6), 假言推理\\ &(8)\ D \to C &\quad CP规则 \end{aligned} (1) D(2) ¬DA(3) A(4) A(BC)(5) BC(6) B(7) C(8) DCP()PT,(1),(2),PT,(3),(4),PT,(5),(6),CP

例6:用CP规则法证明 ( P ∨ Q ) ∧ ( P → R ) ∧ ( Q → S ) ⇒ S ∨ R (P \lor Q) \land (P \to R) \land (Q \to S) \Rightarrow S \lor R (PQ)(PR)(QS)SR(构造性二难推理)。
解答:将原式转化为证明: ( P ∨ Q ) ∧ ( P → R ) ∧ ( Q → S ) ⇒ ¬ S → R (P \lor Q) \land (P \to R) \land (Q \to S) \Rightarrow \lnot S\to R (PQ)(PR)(QS)¬SR
应用CP规则法:
( 1 )   ¬ S P ( 附 加 前 提 ) ( 2 )   Q → S P ( 3 )   ¬ Q T , ( 1 ) , ( 2 ) , 拒 取 式 ( 4 )   P ∨ Q P ( 5 )   P T , ( 3 ) , ( 4 ) , 析 取 三 段 论 ( 6 )   P → R P ( 7 )   R T , ( 5 ) , ( 6 ) , 假 言 推 理 ( 8 )   ¬ S → R C P 规 则 \begin{aligned} &(1)\ \lnot S &\quad P(附加前提)\\ &(2)\ Q\to S &\quad P \\ &(3)\ \lnot Q &\quad T, (1), (2), 拒取式\\ &(4)\ P\lor Q &\quad P\\ &(5)\ P &\quad T, (3), (4), 析取三段论 \\ &(6)\ P \to R &\quad P\\ &(7)\ R &\quad T, (5), (6), 假言推理 \\ &(8)\ \lnot S \to R &\quad CP规则\\ \end{aligned} (1) ¬S(2) QS(3) ¬Q(4) PQ(5) P(6) PR(7) R(8) ¬SRP()PT,(1),(2),PT,(3),(4),PT,(5),(6),CP

例7:设有下列情况,证明结论是有效的。
前提:如果A参加球赛,那么B或C也将参加球赛;如果B参加球赛,那么A不参加球赛;如果D参加球赛,那么C不参加球赛。
结论:如果A参加球赛,那么D不参加球赛。
解答:设命题 A A A:A参加球赛, B B B:B参加球赛, C C C:C参加球赛, D D D:D参加球赛。要证明从 A → ( B ∨ C ) , B → ¬ A , D → ¬ C A \to (B \lor C), B \to \lnot A, D \to \lnot C A(BC),B¬A,D¬C 可推出 A → ¬ D A \to \lnot D A¬D 。应用CP规则法进行证明:
( 1 )   A P ( 附 加 前 提 ) ( 2 )   A → ( B ∨ C ) P ( 3 )   B ∨ C T , ( 1 ) , ( 2 ) , 假 言 推 理 ( 4 )   B → ¬ A P ( 5 )   ¬ B T , ( 1 ) , ( 4 ) , 拒 取 式 ( 6 )   C T , ( 3 ) , ( 5 ) , 析 取 三 段 论 ( 7 )   D → ¬ C P ( 8 )   ¬ D T , ( 6 ) , ( 7 ) , 拒 取 式 ( 9 )   A → ¬ D C P 规 则 \begin{aligned} &(1)\ A &\quad P(附加前提)\\ &(2)\ A \to (B \lor C) &\quad P \\ &(3)\ B \lor C &\quad T, (1), (2), 假言推理\\ &(4)\ B \to \lnot A &\quad P\\ &(5)\ \lnot B &\quad T, (1), (4),拒取式 \\ &(6)\ C &\quad T,(3),(5),析取三段论 \\ &(7)\ D\to \lnot C &\quad P \\ &(8)\ \lnot D &\quad T, (6),(7),拒取式 \\ &(9)\ A\to \lnot D &\quad CP规则\\ \end{aligned} (1) A(2) A(BC)(3) BC(4) B¬A(5) ¬B(6) C(7) D¬C(8) ¬D(9) A¬DP()PT,(1),(2),PT,(1),(4),T,(3),(5),PT,(6),(7),CP

本题还可以用反证法进行证明,直接证明法也行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值