LeetCode 1637. Widest Vertical Area Between Two Points Containing No Points【数组,排序,桶排】中等

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

Given n points on a 2D plane where points[i] = [xi, yi], Return the widest vertical area between two points such that no points are inside the area.

vertical area is an area of fixed-width extending infinitely along the y-axis (i.e., infinite height). The widest vertical area is the one with the maximum width.

Note that points on the edge of a vertical area are not considered included in the area.

Example 1:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EoetT8A8-1680286433825)(https://assets.leetcode.com/uploads/2020/09/19/points3.png)]​

Input: points = [[8,7],[9,9],[7,4],[9,7]]
Output: 1
Explanation: Both the red and the blue area are optimal.

Example 2:

Input: points = [[3,1],[9,0],[1,0],[1,4],[5,3],[8,8]]
Output: 3

Constraints:

  • n == points.length
  • 2 <= n <= 105
  • points[i].length == 2
  • 0 <= xi, yi <= 10^9

题意:给你 n 个二维平面上的点 points ,其中 points[i] = [xi, yi] ,返回两点之间内部不包含任何点的 最宽垂直区域 的宽度。垂直区域 的定义是固定宽度,而 y 轴上无限延伸的一块区域(也就是高度为无穷大)。 最宽垂直区域 为宽度最大的一个垂直区域。垂直区域 边上 的点 不在 区域内。


解法1 排序

可对数组 p o i n t s points points 按照 x x x 升序排列,获取相邻点之间 x x x 的差值的最大值。

class Solution {
public:
    int maxWidthOfVerticalArea(vector<vector<int>>& points) {
        sort(points.begin(), points.end());
        int ans = 0;
        for (int i = 0; i < points.size() - 1; ++i) {
            ans = max(ans, points[i + 1][0] - points[i][0]);
        }
        return ans;
    }
};

复杂度分析:

  • 时间复杂度: O ( n log ⁡ ⁡ n ) O(n\log⁡n) O(nlogn)
  • 空间复杂度: O ( log ⁡ n ) O(\log n) O(logn) 。其中 n n n 为数组 p o i n t s points points 的长度。

解法2 桶排序+估算最大间距(最优)

我们可以利用桶排序,将时间复杂度降低到 O ( n ) O(n) O(n)

我们将数组 p o i n t s points points 的横坐标放入数组 n u m s nums nums,纵坐标不用考虑。假设数组 n u m s nums nums n n n 个元素,所有元素从小到大依次是 n u m s [ 0 ] , n u m s [ 1 ] ,   … ,   n u m s [ n − 1 ] nums[0], nums[1],\ \dots,\ nums[n-1] nums[0],nums[1], , nums[n1] ,最大间距是 m a x G a p maxGap maxGap 。考虑数组中的最大元素和最小元素之差
n u m s [ n − 1 ] − n u m s [ 0 ] = ∑ i = 1 n − 1 ( n u m s [ i ] − n u m s [ i − 1 ] ) ≤ m a x G a p × ( n − 1 ) nums[n -1] - nums[0] = \sum_{i=1}^{n-1} (nums[i] - nums[i - 1]) \le maxGap \times (n - 1) nums[n1]nums[0]=i=1n1(nums[i]nums[i1])maxGap×(n1) 因此: m a x G a p ≥ n u m s [ n − 1 ] − n u m s [ 0 ] n − 1 maxGap \ge \dfrac{nums[n - 1] - nums[0]}{n - 1} maxGapn1nums[n1]nums[0],即最大间距至少为 n u m s [ n − 1 ] − n u m s [ 0 ] n − 1 \dfrac{nums[n - 1] - nums[0] }{n - 1} n1nums[n1]nums[0]

利用桶排序的思想,设定桶的大小(每个桶中最多包含的不同元素个数)为 n u m s [ n − 1 ] − n u m s [ 0 ] n − 1 \dfrac{nums[n - 1] - nums[0] }{n - 1} n1nums[n1]nums[0] ,然后:

  • 将元素按照元素值均匀分布到各个桶内,令同一个桶内的任意两个元素之差小于 m a x G a p maxGap maxGap ,即不会影响到最大间距差大于等于 m a x G a p maxGap maxGap 的两个元素一定在两个不同的桶内,会影响到最大间距
  • 对于每个桶,维护桶内的最小值和最大值,初始时每个桶内的最小值和最大值分别是正无穷和负无穷,表示桶内没有元素。
  • 遍历数组 n u m s nums nums 中的所有元素。对于每个元素,根据该元素与最小元素之差以及桶的大小、计算该元素应分到的桶的编号,可以确保「编号小的桶内的元素」都「小于编号大的桶内的元素」,使用元素值更新元素所在的桶内的最小值和最大值。
  • 遍历结束之后,每个非空的桶内的最小值和最大值都可以确定。按照桶的编号从小到大的顺序依次遍历每个桶,当前的桶的最小值上一个非空的桶的最大值是排序后的相邻元素,计算两个相邻元素之差,并更新最大间距。遍历桶结束之后,即可得到最大间距。
class Solution {
public:
    int maxWidthOfVerticalArea(vector<vector<int>>& points) {
        int n = points.size();
        vector<int> nums;
        for (auto& p : points) {
            nums.push_back(p[0]);
        }
        const int inf = 1 << 30;
        int mi = inf, mx = -inf;
        for (int v : nums) {
            mi = min(mi, v);
            mx = max(mx, v);
        }
        int bucketSize = max(1, (mx - mi) / (n - 1)); // 桶大小,桶中任意元素的差<bucketSize
        int bucketCount = (mx - mi) / bucketSize + 1; // 桶数量,相当于[mi,mx]这段区间分成bucketCount个大小bucketSize的区间
        vector<pair<int, int>> buckets(bucketCount, {inf, -inf});
        for (int v : nums) {
            int i = (v - mi) / bucketSize; // 计算该值放入哪个桶
            buckets[i].first = min(buckets[i].first, v);
            buckets[i].second = max(buckets[i].second, v);
        }
        int ans = 0, prev = inf;
        for (auto [curmin, curmax] : buckets) {
            if (curmin > curmax) continue; // 这个桶中没有值
            ans = max(ans, curmin - prev);
            prev = curmax;
        }
        return ans;
    }
};

复杂度分析:

  • 时间复杂度 O ( n ) O(n) O(n)
  • 空间复杂度 O ( n ) O(n) O(n) 。其中 n n n 为数组 p o i n t s points points 的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值