对于不定整数方程pa+qb=c,若 c mod Gcd(a, b)=0,则该方程存在整数解,否则不存在整数解。
在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,p * a+q * b = Gcd(a, b)的其他整数解满足: p = p0 + b/Gcd(a, b) * t q = q0 - a/Gcd(a, b) * t(其中t为任意整数)
至于pa+qb=c的整数解,只需将p * a+q * b = Gcd(a, b)的每个解乘上 c/Gcd(a, b) 即可。 在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,应该是 得到p * a+q * b = c的一组解p1 = p0*(c/Gcd(a,b)),q1 = q0*(c/Gcd(a,b)),p * a+q * b = c的其他整数解满足: p = p1 + b/Gcd(a, b) * t q = q1 - a/Gcd(a, b) * t(其中t为任意整数) p 、q就是p * a+q * b = c的所有整数解。
只有两个数互质的时候才存在乘法逆元,即c=1。
例:求5的模7逆
做辗转相除法, 求得整数b,k使得 5p+7q=1, 则p是5的模7逆,q是7的模5逆。
计算如下:
7=5+2, 5=2×2+1.
回代 1=5-2×2=5-2×(7-5)= 3×5-2×7,
得 5^ -1≡3(mod7).(其中“^”是次方的意思)
例:求21的模73逆
做辗转相除法, 求得整数b,k使得 21p+73q=1, 则p是21的模73逆,q是73的模21逆。
计算如下:
73=21*3+10
21=10*2+1
回代 1=21-10*2
1=21-(73-21*3)*2
=21-73*2+6*21
=7*21-73*2
得 21^ -1≡7(mod73). (其中“^”是次方的意思)
求乘法逆元的代码:
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;
int gcd(int a,int b,int &x,int &y)
{
int ans;
if(!b)
{
x=1;
y=0;
return a;
}
ans = gcd(b,a%b,x,y);
int temp = x;
x= y;
y= temp - (a/b)*y;
return ans;
}
int main()
{
///求ax+by=c的乘法逆元
int a,b,c,x,y;
int temp;
while(scanf("%d%d%d",&a,&b,&c),a||b||c)
{
int ans_x,ans_y;///a,b的逆元
///c总为1
temp = gcd(a,b,x,y);
if(c%temp)
{
printf("乘法逆元不存在!\n");
continue;
}
ans_x = (x*c/temp) <0 ? x*c/temp+b : x*c/temp;
ans_y = (y*c/temp) <0 ? y*c/temp+a : y*c/temp;
printf("%d %d\n",ans_x,ans_y);
}
return 0;
}