1. 纵横分离法+矢量微分方程+边界条件 求解波函数
场矢量的第一次纵横分离是将纵向分量和横向分量分离(三维矢量变三维标量),第二次纵横分离是将横向坐标函数(分布函数)和横向坐标函数(传播因子)分离。

2. 公式推导
(1)TE波、TM波、TEM波三维场函数
两次纵横分离后得到的分布函数(二维)表达式如下,分布函数与传播因子相乘得到最终三维场函数。

根据TE波(纵向电场分量
E
z
=
0
E_z=0
Ez=0),TM波(纵向磁场分量
H
z
=
0
H_z=0
Hz=0),TEM波(纵向电场分量
E
z
=
0
E_z=0
Ez=0,纵向磁场分量
H
z
=
0
H_z=0
Hz=0)特点,可代入上述波函数化简得到如下结果。
TEM波的截至波数=0,波阻抗=真空中波阻抗,相位常数=媒质波数。
逻辑就是纵向电场/磁场分量可求得横向电场/磁场分量,进而求得横向磁场/电场。
(2)TE波、TM波、TEM波边界条件
纵向无限长,理想导体边界条件如下:

对于TM波,H纵向分量为0,应求E的边界条件。代入1式。
对于TE波,E纵向分量为0,应求H的边界条件。代入4式。
(3)矢量波动方程(如图一)
(4)完结
三维函数与二维分布函数如下。