1.输出二叉树中的叶子结点
思路:在二叉树的遍历算法中增加检测结点的“左右子树是否都为空”
void PreorderTraversal( BinTree BT ) {
if( BT ) {
if( !BT->Left && !BT->Right) //检测左右子树是否都为空
printf("%d ", BT->Data );
PreorderTraversal( BT->Left );
PreorderTraversal( BT->Right );
}
}
2.求二叉树的高度
思路:二叉树的高度等于左右子树的最高高度加一,即Height = max (HL,HR)+1
可以考虑采用递归
void PostorderGetHeight( BinTree BT ) {
if( BT ) {
HL = PostorderGetHeight( BT->Left ); //求左子树的高度
HR = PostorderGetHeight( BT->Right ); //求右子树的高度
MaxH = (HL>HR) ? HL : HR; //求左右子树的最大高度
return (MaxH +1); //返回树的深度
}
else return 0; //空树的深度为0
}
3.二元表达式树及其遍历
三种遍历可以得到三种不同的访问结果:
先序遍历可以得到前缀表达式
中序遍历可以得到中缀表达式
后序遍历可以得到后缀表达式
- 其中,中缀表达式受运算符优先级影响,可能会不准确,可通过先输出左括号再输出左子树,然后再输出右括号这种方式解决。
4.由两种遍历序列唯一确定二叉树
* 必须要有中序序列
因为只知道先序和后序序列没有办法分清左右子树的边界
具体解答写在【剑指offer】重建二叉树了https://blog.csdn.net/my_miuye/article/details/90514389
(文章整理自中国大学慕课的浙江大学的数据结构课程,有兴趣的朋友们也可以去学习回顾一下)