

第五章 控制系统的稳定性分析
控制系统实用的首要条件是系统必须稳定。本章介绍稳定性的基本概念、稳定性判据、系统的相对稳定性。
§1. 控制系统稳定性的基本概念
一.稳定性的定义:
系统在一定的干扰作用下,偏离了稳定的平衡状态,在干扰消除后,能以足够的精度逐渐恢复到原来的状态的能力。它是系统固有的特性,与初始条件及输入无关。
稳定性的严密数学定义是由俄国的李雅普诺夫首先建立的,对于临界稳定性是作为稳定来处理的,但实际工程上则认为是不稳定的。
稳定 |
不稳定 |
临界稳定 |
t |
t |
t |
二.判别线性系统稳定性的基本准则
系统的传递函数一般形式为:
输入脉冲信号(相当于干扰信号作用)时,如系统的稳态值为0则系统稳定,否则稳态值为无穷大或振荡时则系统不稳定。
可见要满足: ,只有si(i=1,2,…,n)的实部应全部为负的。即特征方程 的所有根必须全部具有负实部。或者说系统的传递函数的极点全部位于s复平面的左半部。
如有实部为零的根,则出现临界稳定状态(振荡),如有零根存在,则出现常数项,相当于系统偏离了平衡状态,所以工程上也认为系统不稳定。
由上所述,可得稳定性判别的基本准则:
系统稳定的必要和充分条件是其特征方程的根全部在s复平面的左半平面。如果有根在右半平面,系统不稳定,如果有根在虚轴上,系统处于临界稳定状态(振荡),如果有根在原点上,系统偏离平衡点,也不稳定。
由于直接求解高阶方程的根过于复杂,因此有了下列求解方程的稳定判据方法。
§2. 控制系统的稳定判据
一.代数稳定判据
不必求解系统的特征方程,通过对特征方程的系数进行分析来判断系统的稳定性的方法。
对于特征方程: 通过因式分解,总可以分解为一次因子和二次因子的乘积的形式,即:(s+a)和(s2+bs+c)相乘的形式。只有a、b、c都是非零的正值时,才能得到负实根或具有负实部的共轭复根。所以ai<0是判定系统稳定的必要条件,但非充分条件。罗斯-赫尔维茨稳定判据即是检验系统稳定的充分条件。
罗斯稳定判据适用于四阶以上的高阶系统,而赫尔维茨稳定判据则对于低阶系统较为方便。
1. 罗斯(Routh)稳定判据:
1) 求罗斯计算表:任意一行的各项同时乘以一个正数,结果不变。
式中: , , ……
直至其余的b为零。同样的:
, ……
, ……
2) 第一列各数的符号全为正,则说明无正实部的根,系统稳定。否则系统不稳定,第一列各项符号变化的次数就是不稳定根的数目。
3) 第一列出现零的情况时,用一个小的正数ε代替0进行计算后,再令ε→0求极限来判别第一列系数的符号。实际上在无符号变化是表示有一对虚根存在,有符号变化时则同上。
4) 如出现一行全零时,此时存在一些对称(大小相等,符号相反)的根(包括实根和共轭复根,系统处于临界稳定状态)。则用上一行的系数组成一个辅助方程,对方程求导后得到的系数代替原为零的各项,再继续。解辅助方程得的根即为特征方程的根。
2. 赫尔维茨(