折半查找法

本文介绍了一种高效的查找算法——二分查找(折半查找),详细解释了其工作原理及应用场景。该算法的时间复杂度为O(log(n)),适用于已排序的数组。通过具体的C语言实现代码,展示了如何在数组中查找指定元素及其位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


/**
* 折半查找又称二分查找,算法复杂度为O(log(n)),但缺点是要求
* 待查表为有序表,此算法充分利用了数组的有序性,采用分治策略
* 找出待查元素在数组中的位置,若数组中不存在该元素,则返回-1
*/

#include <stdio.h>

int binary_search(int array[], int n, int data)
{
int low = 0, high = n - 1, mid;

while(high >= low)
{
mid = (low + high) / 2;

if(array[mid] == data)
return mid;
else if(array[mid] > data)
high = mid - 1;
else
low = mid + 1;
}
return -1;
}

main()
{
int array[] = {1, 5, 30, 41, 100, 101};
printf("%d\n", binary_search(array, 6, 101));
printf("%d\n", binary_search(array, 6, 2));
}

运行结果:
5
-1

在C++中,折半查找(也称为二分查找)是一种非常高效的在有序数组中查找特定元素的搜索算法。以下是基本的折半查找法的C++实现: ```cpp // 定义一个辅助函数用于二分查找 template <typename T> size_t binarySearch(const std::vector<T>& arr, const T& target) { size_t left = 0; size_t right = arr.size() - 1; // 当左指针小于等于右指针时继续循环 while (left <= right) { // 计算中间索引 size_t mid = left + (right - left) / 2; // 检查中间元素是否为目标值 if (arr[mid] == target) { // 找到目标,返回其索引 return mid; } // 如果中间元素大于目标,缩小搜索范围到左半部分 else if (arr[mid] > target) { right = mid - 1; } // 否则,缩小搜索范围到右半部分 else { left = mid + 1; } } // 没有找到目标,返回一个表示找不到的位置(通常设置为数组长度) return arr.size(); } // 在主程序中使用 int main() { // 假设我们有一个已排序的整数数组 std::vector<int> sortedArray = {1, 3, 5, 7, 9, 11, 13}; // 输入要查找的目标值 int searchValue; std::cout << "Enter a value to search: "; std::cin >> searchValue; // 使用二分查找函数查找目标值并输出位置 size_t position = binarySearch(sortedArray, searchValue); if (position != std::vector<int>::npos) { std::cout << "Target value found at index: " << position << std::endl; } else { std::cout << "Target value not found in the array." << std::endl; } return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值