一般的线性表、树,数据在结构中的相对位置是随机的,即和记录的关键字之间不存在确定的关系,因此,在结构中查找记录时需进行一系列和关键字的比较。这一类查找方法建立在“比较“的基础上,查找的效率依赖于查找过程中所进行的比较次数。
若想能直接找到需要的记录,必须在记录的存储位置和它的关键字之间建立一个确定的对应关系f,使每个关键字和结构中一个唯一的存储位置相对应,这就是哈希表。
哈希表是一种数据结构,它可以提供快速的插入操作和查找操作。
哈希表是基于数组结构实现的,所以它也存在一些缺点:
数组创建后难于扩展,某些哈希表被基本填满时,性能下降得非常严重。
这个问题是哈希表不可避免的,即冲突现象:对不同的关键字可能得到同一哈希地址。
所以在以下情况下可以优先考虑使用哈希表:
不需要有序遍历数据,并且可以提前预测数据量的大小。
以下为本人看过的一个很好的例子,形象的说明为什么在比较两个对象时,必须要重载equals和hasCode方法。
1.hashcode是用来查找的,如果你学过数据结构就应该知道,在查找和排序这一章有
例如内存中有这样的位置
0 1 2 3 4 5 6 7
而我有个类,这个类有个字段叫ID,我要把这个类存放在以上8个位置之一,如果不用hashcode而任意存放,那么当查找时就需要到这八个位置里挨个去找,或者用二分法一类的算法。
但如果用hashcode那就会使效率提高很多。
我们这个类中有个字段叫ID,那么我们就定义我们的hashcode为ID%8,然后把我们的类存放在取得得余数那个位置。比如我们的ID为 9,9除8的余数为1,那么我们就把该类存在1这个位置,如果ID是13,求得的余数是5,那么我们就把该类放在5这个位置。这样,以后在查找该类时就可 以通过ID除8求余数直接找到存放的位置了。
2.但是如果两个类有相同的hashcode怎么办那(我们假设上面的类的ID不是唯一的),例如9除以8和17除以8的余数都是1,那么这是不是合法的,回答是:可以这样。那么如何判断呢?在这个时候就需要定义 equals了。
也就是说,我们先通过 hashcode来判断两个类是否存放某个桶里,但这个桶里可能有很多类,那么我们就需要再通过 equals 来在这个桶里找到我们要的类。
那么。重写了equals(),为什么还要重写hashCode()呢?
想想,你要在一个桶里找东西,你必须先要找到这个桶啊,你不通过重写hashcode()来找到桶,光重写equals()有什么用啊