剑指offer-test47

47.求1+2+3+…+n
要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C)。
三种方法:
方法一:递归实现1+2+…+n;
方法二:n(n+1)/2,递归实现n(n+1);
方法三,利用Math实现n(n+1)

方法一:利用短路 && 来实现 if的功能–复杂度O(n)
1.需利用逻辑与的短路特性实现递归终止。
短路特性:前面的条件判真(或者假)了,就不会再执行后面的条件了
2.当n==0时,(n>0)&&((sum+=Sum_Solution(n-1))>0)只执行前面的判断,为false,然后直接返回0;
3.当n>0时,执行sum+=Sum_Solution(n-1),实现递归计算Sum_Solution(n)。

public class Solution1 {
    public int Sum_Solution(int n) {
        int sum=n;
        //实现了循环,从n一直递减加到了1,
        //逻辑与and操作实现了当n=0时,不再计算Sum_Solution(n),
        boolean flag=(n>0)&&((sum += Sum_Solution(--n))>0);
        return sum;
    }
}

class Solution2 {
public:
    int Sum_Solution(int n) {
        int ret = 0;
        n == 0 || (ret = Sum_Solution(n - 1));
        return n + ret;
    }
}

方法二:利用等差数列求和公式sum=n(n+1)/2.
主要难度在于求n(n+1),需要写一个满足题意的乘法函数,合理利用’&&'运算的短路特性,实际上就是改写"快速乘",跟"快速幂"的思想一样。

递归实现a*b,可以利用位运算来做,快速幂,快速模乘,
原理是把a拆成2的幂的和,a = 2^e0 + 2^e1 + 2^e2…
那么 a * b = (2^e0 + 2^e1 + 2^e2+…) * b
= b * 2^e0 + b * 2^e1 + b * 2^e2 + …
= (b << e0) + (b << e1) + …

public class Solution {
    public int Sum_Solution(int n) {
        return multi(n,n+1)>>1;
     }
    public int multi(int a,int b){
        int res=0;
        boolean flag1=((a&1)==1)&&((res+=b)>=0);
        a>>=1;
        b<<=1;
        boolean flag2=(a>0)&&((res+=multi(a,b))>0);
        return res;
    }
}

方法3:
.pow(n,2)表示计算n的2次方
(>>)表示右移,如果该数为正,则高位补0,若为负数,则高位补1;

public class Solution {
    public int Sum_Solution(int n) {
        return(int)(Math.pow(n,2)+n)>>1;//归纳总结
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值