- 博客(5)
- 收藏
- 关注
原创 Solver Sudoku Puzzle via Smart Phone Camera
show you how to capture the sudoku puzzle by smart phone camera and then solve it
2018-01-02 14:30:02 356
原创 DNN in hard way:卷积层
卷积层在上面的几篇文章中,我们已经看到了全链接层的威力,但是,这还远远不够。在本文中,我们将看到DNN的一个重要特性,卷积层。 熟悉信号处理的朋友对于卷积的概念不会陌生,这就是我们常用的滤波。只是在很多应用场景中,不是我们常见的一维滤波,而是图像处理中常见的2D滤波(比如最常见的锐化,就是一个简单的高通滤波)。在深度学习的术语中,滤波器被叫做卷积核(kernal)。 在以图像为输入的DNN网络中
2017-10-16 09:56:02 488
原创 Repeat the Wheel of Deep Neural Networks - DNN造轮记 (3)
提要RegularizationRegularization的目标是防止过拟合(overfitting)。在logic regression中,最常见的方法是L2 Normalization。在神经网络中,L2方法不是那么常见,我们经常采用的是dropout。L1 / L2 Norm所谓L1,是指用所有weights(不包含bias)的绝对值之和最为惩罚函数。所谓L2,是指用所有weights的平方
2017-10-08 09:12:09 158
原创 Repeat the Wheel of Deep Neural Networks - DNN造轮记 (2)
提要在上一篇中,我们简单了解了代价函数。现在我们要构建一个基于反向传播算法的基本网络,这个网络优化的目标,就是我们上一节讨论过的代价函数。基本结构一个基本的神经网络层包含了线性计算和激活函数两个部分。 我们将这一层的输入记为XB×FIX_{B \times F_I},其中BB为每次训练的batch size,FIF_I为每个数据中feature的数目。该层输出记为YB×FOY_{B\times F
2017-10-04 18:24:25 156
原创 Repeat the Wheel of Deep Neural Networks - DNN造轮记 (1)
深度学习现在真的是炙手可热,很多ICer也都在积蓄力量,准备在这个领域厚积薄发。本系列的主要目的是为了熟悉DNN计算的各种细节,所以作者采用了最基本的矩阵计算而没有采用任何流行的架构(比如tensorflow)。同样的,为了适合在缺乏大量运算资源的限制下进行DNN的学习,所以采用了高效的Matlab / Octave作为矩阵运算的平台。作为开始的第一篇,本文将只涉及到简单的神经网络,并不涉及到卷积层
2017-10-01 16:40:15 221
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人